Collider Physics

Lisboa 2012

Basic facts
 Standard Model examples

Disclaimer

- The goal is to treat some of the basic elements aiming to make it easier to go to the literature
- Many details will not be mentioned
- Basic reference: Tao Han hep-ph/0508097
- Another reference: "QCD and Collider Physics" by Ellis, Stirling and Webber.

What we know:

$$\mathcal{L} = \mathcal{L}_{\mathrm{kinetic}}^{\mathbf{f}} + \mathcal{L}_{\mathrm{kinetic}}^{\mathbf{GB}} + \mathcal{L}_{\mathrm{ffv}} + \mathcal{L}_{\mathrm{vvv}} + \mathcal{L}_{\mathrm{vvvv}} + \mathcal{L}_{\mathrm{EWSB}}$$

 \odot SU(3)_c × SU(2)_L × U(1)_Y gauge interaction between fermions and gauge bosons tested at 0.1% level.

Some information on the interactions between the gauge bosons

 \mathcal{L}_{EWSB} has not been directly tested: origin of masses, flavor physics, ...

What we know:

$$\mathcal{L} = \mathcal{L}_{\mathrm{kinetic}}^{\mathbf{f}} + \mathcal{L}_{\mathrm{kinetic}}^{\mathbf{GB}} + \mathcal{L}_{\mathrm{ffv}} + \mathcal{L}_{\mathrm{vvv}} + \mathcal{L}_{\mathrm{vvvv}} + \mathcal{L}_{\mathrm{EWSB}}$$

 \odot SU(3)_c × SU(2)_L × U(1)_Y gauge interaction between fermions and gauge bosons tested at 0.1% level.

Some information on the interactions between the gauge bosons

 \mathcal{L}_{EWSB} has not been directly tested: origin of masses, flavor physics, ...

LHC has already enough data to start testing the SM and going beyond it

I. Basic Facts

- Collider parameters
- e^+e^- colliders
- Hadron colliders
- Detectors
- Useful kinematical variables
- Evaluation of scattering amplitudes

I. Collider parameters

• Relativity together with quantum mechanics lead to

• Basic parameters

I. Center-of-mass energy $1+2 \rightarrow X$

 $\mathbf{s} \equiv \mathbf{E_{CM}^2} \equiv (\mathbf{p_1} + \mathbf{p_2})^2 = \begin{cases} (E_1 + E_2)^2 & \text{in the c.m. frame } \vec{p_1} + \vec{p_2} = 0, \\ m_1^2 + m_2^2 + 2(E_1 E_2 - \vec{p_1} \cdot \vec{p_2}). \end{cases}$

• Basic parameters

I. Center-of-mass energy $1+2 \rightarrow X$

$$\mathbf{s} \equiv \mathbf{E_{CM}^2} \equiv (\mathbf{p_1} + \mathbf{p_2})^2 = \begin{cases} (E_1 + E_2)^2 & \text{in the c.m. frame } \vec{p_1} + \vec{p_2} = 0, \\ m_1^2 + m_2^2 + 2(E_1 E_2 - \vec{p_1} \cdot \vec{p_2}). \end{cases}$$

2. Instantaneous luminosity $\mathcal L$: event rate is proportional to σ

- Important rule of a thumb: $\sigma \propto 1/E_{CM}^2 \Longrightarrow \mathcal{L}$ grows as $\simeq E_{CM}^2$
- Useful luminosity change of units

$$10^{33} \text{ cm}^{-2} \text{ s}^{-1} = 1 \text{ nb}^{-1} \text{ s}^{-1} \approx 10 \text{ fb}^{-1}/\text{year}$$

II. e^+e^- colliders

- Main advantages:
 - $> e^+e^-$ interactions are well understood
 - > Initial charges are zero => to produce new states
 - > Scattering kinematics is well understood/constrained
 - In the CM frame all energy available to produce new states
 It is possible to polarize the initial beams.
- Main disadvantages:
 - > large synchroton radiation => linear machines
 - > It is easier to produce spin-1 states in the s-channel
 - There are energy losses by bremstrahlung/beamsstrahlungThe energy spread needs to be taken into account

$$\int \mathbf{d}\tau \frac{\mathbf{d}\mathcal{L}}{\mathbf{d}\tau} \ \sigma(\mathbf{\hat{s}}) \text{ with } \tau = \sqrt{\mathbf{\hat{s}}}/\sqrt{\mathbf{s}}$$

II. e^+e^- colliders

II. e^+e^- colliders

- Main advantages:
 - $> e^+e^-$ interactions are well understood
 - > Initial charges are zero => to produce new states
 - > Scattering kinematics is well understood/constrained
 - In the CM frame all energy available to produce new states
 It is possible to polarize the initial beams.
- Main disadvantages:
 - > large synchroton radiation => linear machines
 - > It is easier to produce spin-1 states in the s-channel
 - There are energy losses by bremstrahlung/beamsstrahlungThe energy spread needs to be taken into account

$$\int \mathbf{d}\tau \frac{\mathbf{d}\mathcal{L}}{\mathbf{d}\tau} \ \sigma(\mathbf{\hat{s}}) \text{ with } \tau = \sqrt{\mathbf{\hat{s}}}/\sqrt{\mathbf{s}}$$

• SM processes

III. Hadron colliders

- protons are much heavier than electrons => higher CM energies
- higher luminosities can be achieved
- protons are composed of quarks and gluons => fewer kinematical constraints
- protons are strongly interacting: collisions are messier
- strong interactions => large cross sections $\sigma_{
 m total} \simeq 100~{
 m mb}$

III. Hadron collide and the second se

- protons are much heavier t
- higher luminosities can be a
- protons are composed of q kinematical constraints
- protons are strongly intera
- strong interactions => larg

proton

underlying event <

outgoing parton

"Hard" Scattering

radiation

Useful quantity:

$$\sigma(s) = \sum_{a,b} \int dx_1 dx_2 \ f_{a/A}(x_1) f_{b/B}(x_2) \ \hat{\sigma}(\hat{s})$$
$$= \sum_{a,b} \int d\tau \int \frac{dx}{x} f_{a/A}(x) f_{b/B}(\tau/x) \ \hat{\sigma}(\tau s)$$

where $\tau = \mathbf{x_1}\mathbf{x_2}$

$$\sigma(s) = \sum_{\{ij\}} \int_{\tau_0}^1 \frac{d\tau}{\tau} \cdot \frac{\tau}{\hat{s}} \frac{d\mathcal{L}_{ij}}{d\tau} \cdot \left[\hat{s}\hat{\sigma}_{ij\to\alpha}(\hat{s})\right]$$

we define the parton-parton luminosity

$$\frac{\tau}{\hat{s}}\frac{d\mathcal{L}_{ij}}{d\tau} \equiv \frac{\tau/\hat{s}}{1+\delta_{ij}} \int_{\tau}^{1} dx [f_i^{(a)}(x)f_j^{(b)}(\tau/x) + f_j^{(a)}(x)f_i^{(b)}(\tau/x)]/x$$

IV. Detectors

- Goal: measure position, time, momentum, energy, type,....
- modern detectors are very complex.

• The signal of a particle depends on its interactions and decay length

$$\mathbf{d} = (\beta \ \mathbf{c}\tau) \frac{\mathbf{E}}{\mathbf{M}} \approx (\mathbf{300} \ \mu \mathbf{m}) \left(\frac{\tau}{\mathbf{10^{-12} \ s}}\right) \ \frac{\mathbf{E}}{\mathbf{M}}$$

- There are a few possibilities:
 - Fast decay, eg, gluons hadronize in

 $t_{\mathbf{h}} \sim 1/\Lambda_{\mathbf{QCD}} \approx 1/(200~\mathrm{MeV}) \approx 3.3 \times 10^{-24}$ s

energetic q/g produce jets

• The signal of a particle depends on its interactions and decay length **ALEPH** DALI Evt=5906 Run=15768 **2** ŏ

• stable particles: $({f p},~{f ar p},~{f e}^{\pm},~\gamma)$ leave energy deposit and/or tracks

• stable particles: $({f p},~{f ar p},~{f e}^{\pm},~\gamma)$ leave energy deposit and/or tracks

• Quasi-stable particles: behave like the stable ones

$$(\tau > 10^{-10} \text{ s, e.g.} \quad \mathbf{n}, \mathbf{\Lambda}, \mathbf{K_L^0}, \ \dots \ \mu^{\pm}, \ \pi^{\pm}, \mathbf{K^{\pm}}, \ \dots)$$

• stable particles: $({f p},~ar{{f p}},~{f e}^{\pm},~\gamma)$ leave energy deposit and/or tracks

• Quasi-stable particles: behave like the stable ones $(\tau > 10^{-10} \text{ s, e.g. } \mathbf{n}, \mathbf{\Lambda}, \mathbf{K}_{\mathbf{L}}^{\mathbf{0}}, \dots \mu^{\pm}, \pi^{\pm}, \mathbf{K}^{\pm}, \dots)$

• Short lived resonances decay promptly \mathbf{W}^{\pm} , $\mathbf{Z}(\mathbf{10^{-25} s}); \pi^{\mathbf{0}}, \rho, \dots$

• stable particles: $({f p},~{f ar p},~{f e}^{\pm},~\gamma)$ leave energy deposit and/or tracks

• Quasi-stable particles: behave like the stable ones $(\tau > 10^{-10} \text{ s, e.g. } \mathbf{n}, \mathbf{\Lambda}, \mathbf{K}_{\mathbf{L}}^{\mathbf{0}}, \dots \mu^{\pm}, \pi^{\pm}, \mathbf{K}^{\pm}, \dots)$

• Short lived resonances decay promptly \mathbf{W}^{\pm} , $\mathbf{Z}(\mathbf{10^{-25} s}); \pi^{\mathbf{0}}, \rho, \dots$

• Displaced vertices:

 $B^{0,\pm}, D^{0,\pm}, \tau^{\pm}, (\tau \sim 10^{-12} \text{ s}; c\tau \sim 100 \ \mu\text{m}). K_S^0 \to \pi^+\pi^- \text{ w}/c\tau \sim 2.7 \text{ cm}$

• stable particles: $({f p},~{f ar p},~{f e}^{\pm},~\gamma)$ leave energy deposit and/or tracks

• Quasi-stable particles: behave like the stable ones $(\tau > 10^{-10} \text{ s, e.g. } \mathbf{n}, \mathbf{\Lambda}, \mathbf{K}_{\mathbf{L}}^{\mathbf{0}}, \dots \mu^{\pm}, \pi^{\pm}, \mathbf{K}^{\pm}, \dots)$

• Short lived resonances decay promptly \mathbf{W}^{\pm} , $\mathbf{Z}(\mathbf{10^{-25} s}); \pi^{\mathbf{0}}, \rho, \dots$

• Displaced vertices:

 $B^{0,\pm}, D^{0,\pm}, \tau^{\pm}, (\tau \sim 10^{-12} \text{ s}; c\tau \sim 100 \ \mu\text{m}). K_S^0 \to \pi^+\pi^- \text{ w}/c\tau \sim 2.7 \text{ cm}$

• Neutral weakly interacting particles leave no signal (
u)

• More complex analyses can be made

Leptons	Vertexing	Tracking	ECAL	HCAL	Muon Cham.
e^{\pm}	×	$ec{p}$	E	×	×
μ^{\pm}	×	$ec{p}$			$ec{p}$
τ^{\pm}	$\sqrt{\times}$		e^{\pm}	$h^{\pm}; \ 3h^{\pm}$	μ^{\pm}
$ u_e, u_\mu, u_ au$	×	×	×	×	×
Quarks					
u, d, s	×				×
$c \rightarrow D$			e^{\pm}	h's	μ^{\pm}
$b \rightarrow B$			e^{\pm}	h's	μ^{\pm}
$t \to bW^{\pm}$	b		e^{\pm}	b+2 jets	μ^{\pm}
Gauge bosons					
γ	×	×	E	×	×
g	×				×
$W^{\pm} \to \ell^{\pm} \nu$	×	$ec{p}$	e^{\pm}	×	μ^{\pm}
$\rightarrow q \bar{q}'$	×			2 jets	×
$Z^0 \to \ell^+ \ell^-$	×	$ec{p}$	e^{\pm}	×	μ^{\pm}
$\longrightarrow q\bar{q}$	$(b\overline{b})$	\sim		2 jets	×

• Typical detector performance:

> Coverage: $|\eta_{\text{track}}| < 2.5 |\eta_{\text{cal}}| < 5.$

> Tracker momentum resolution

$$\frac{\Delta \mathbf{p_T}}{\mathbf{p_T}} = \mathbf{0.36p_T} \oplus \frac{\mathbf{0.013}}{\sqrt{\sin \theta}} \text{ (in TeV)}$$

> ECAL resolution:

$$rac{\Delta \mathbf{E}}{\mathbf{E}} = rac{\mathbf{10\%}}{\sqrt{\mathbf{E}/\mathrm{GeV}}} \oplus \mathbf{0.4\%}$$

> HCAL resolution

$$rac{\Delta \mathbf{E}}{\mathbf{E}} = rac{\mathbf{80\%}}{\sqrt{\mathbf{E}/\mathrm{GeV}}} \oplus \mathbf{15\%}$$

> Vertexing performance:

> Vertexing performance:

- Trigger: for large events rates, eg, at LHC it is 40 MHz, it is impossible to store all events.
- At the LHC a event rate of 200 Hz can be stored!!!
- the trigger is a fast selection to reduce the event rate for writing.
- There are several layers of decision (level-1, level-2, etc)

V. Useful kinematical variables

- Subprocess center-of-mass energy: in the LAB frame $\mathbf{p}_{\mathbf{CM}}^{\mu} = \simeq \frac{\sqrt{s}}{2} (\mathbf{x_1} + \mathbf{x_2}, \mathbf{0}, \mathbf{0}, \mathbf{x_1} \mathbf{x_2}) \implies \mathbf{\hat{s}} = \mathbf{x_1} \mathbf{x_2} \mathbf{s}$
- Rapidity/pseudo-rapidity: $\mathbf{E}(\mathbf{1}, \beta \sin \theta \cos \phi, \beta \sin \theta \sin \phi, \beta \cos \theta)$

$$\mathbf{y} \equiv \frac{\mathbf{1}}{\mathbf{2}} \log \frac{\mathbf{E} + \mathbf{p}_{\mathbf{z}}}{\mathbf{E} - \mathbf{p}_{\mathbf{z}}} \longrightarrow \eta = \frac{\mathbf{1}}{\mathbf{2}} \log \frac{\mathbf{1} + \cos \theta}{\mathbf{1} - \cos \theta} \quad \text{for} \quad \beta \to \mathbf{1}$$

• The CM and LAB frames are related by

$$\mathbf{y} = \mathbf{y}^* + \mathbf{y}_{\mathbf{c.m.}} = \mathbf{y}^* + \frac{1}{2}\log\frac{\mathbf{x_1}}{\mathbf{x_2}}$$

V. Useful kinematical variables

- Subprocess center-of-mass energy: in the LAB frame $\mathbf{p}_{\mathbf{CM}}^{\mu} = \simeq \frac{\sqrt{s}}{2} (\mathbf{x_1} + \mathbf{x_2}, \mathbf{0}, \mathbf{0}, \mathbf{x_1} \mathbf{x_2}) \implies \mathbf{\hat{s}} = \mathbf{x_1} \mathbf{x_2} \mathbf{s}$
- Rapidity/pseudo-rapidity: $\mathbf{E}(\mathbf{1}, \beta \sin \theta \cos \phi, \beta \sin \theta \sin \phi, \beta \cos \theta)$

$$\mathbf{y} \equiv \frac{\mathbf{1}}{\mathbf{2}} \log \frac{\mathbf{E} + \mathbf{p}_{\mathbf{z}}}{\mathbf{E} - \mathbf{p}_{\mathbf{z}}} \longrightarrow \eta = \frac{\mathbf{1}}{\mathbf{2}} \log \frac{\mathbf{1} + \cos \theta}{\mathbf{1} - \cos \theta} \quad \text{for} \quad \beta \to \mathbf{1}$$

• The CM and LAB frames are related by

$$\mathbf{y} = \mathbf{y}^* + \mathbf{y}_{\mathbf{c.m.}} = \mathbf{y}^* + \frac{1}{2}\log\frac{\mathbf{x_1}}{\mathbf{x_2}}$$

• A useful change of variables is

$$\mathbf{x_{1,2}} = \sqrt{\tau} \, \mathbf{e^{\pm y_{cm}}} \implies \int_{\tau_0}^1 d\mathbf{x_1} \int_{\tau_0/\mathbf{x_1}}^1 d\mathbf{x_2} = \int_{\tau_0}^1 d\tau \int_{\frac{1}{2}\ln\tau}^{-\frac{1}{2}\ln\tau} d\mathbf{y_{cm}}$$

• Largely used due to $\frac{d^3 \tilde{p}}{E} = dpxdpy \frac{dp_z}{E} = p_T dp_T d\varphi dy$

with the φ (azimuthal angle), PT (transverse momentum) and y being invariant under longitudinal boosts

- It is usual to represent deposit of energy in the $(\eta, arphi)$ plane

and the separation $\ \Delta {f R} = \sqrt{\Delta arphi^2 + \Delta \eta^2}$

 $Z \to \mu^- \mu^+ + 3$ jets

Run Number 158466, Event Number 4174272 Date: 2010-07-02 17:49:13 CEST

Invariant mass

• Consider an unstable particle $(\mathbf{X} = \mathbf{Z}, \mathbf{W}^{\pm}, \mathbf{t})$ decaying $\mathbf{X} \xrightarrow{graph} \mathbf{ab} \dots$

$$rac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{M}_{\mathrm{ab...}}} \propto rac{1}{(\mathrm{M}^2_{\mathrm{ab...}}-\mathrm{M}^2_{\mathrm{X}})^2+\Gamma^2_{\mathrm{X}}\mathrm{M}^2_{\mathrm{X}}}$$

and exhibits a peak for $\mathbf{M^2_{ab...}} = (\mathbf{p_a} + \mathbf{p_b} + \dots)^2 = (\sum_i^n \mathbf{p_i})^2 \approx \mathbf{M^2_X}$

 \bullet For the same reason the production $ab\to X+$ anything exhibits a peak for ${\bf M^2_{ab}}\simeq {\bf M^2_X}$

• If the decays products are observable \implies we can reconstruct $M_{ab...}$, e.g. $\mathbf{Z} \rightarrow \mathbf{e^+e^-}, \ \mathbf{b}\mathbf{\bar{b}}, \ \ldots$

• $e^+e^- \rightarrow Z$: in this case $M_{e^+e^-} = \sqrt{s}$

• At the CMS $pp \rightarrow \mathbf{Z} + \mathbf{X} \rightarrow \mu^+ \mu^-$

much more can be done with dileptons!

Transverse mass

• Consider the process $\mathbf{p}\mathbf{\bar{p}}\to\mathbf{W}\mathbf{X}\to\mathbf{e}\nu\mathbf{X}$

$$m_{e\nu}^2 = (E_e + E_{\nu})^2 - (\tilde{p}_{eT} + \tilde{p}_{\nu T})^2 - (p_{ez} + p_{\nu z})^2$$

- However, $\tilde{\mathbf{p}}_{\nu}$ is not observable.
- We can infer $\vec{p}_{\nu T} \simeq \tilde{\vec{p}_T} = -\sum \tilde{\mathbf{p}_T}$ (observed). Analogously $\vec{E}_T = \mathbf{E}_{\nu}$

uses all we can measure in the transverse plane

- We define the transverse mass [UAI]
- $\mathbf{m_{e\nu T}^2} \equiv (\mathbf{E_{eT}} + \mathbf{E_{\nu T}})^2 (\tilde{\mathbf{p}_{eT}} + \tilde{\mathbf{p}_{\nu T}})^2 \approx 2\tilde{\mathbf{p}_{eT}} \cdot \tilde{\mathbf{p}_{\nu T}} \approx 2\mathbf{E_{eT}} \vec{E_T} (1 \cos\phi_{e\nu})$

• In general $0 \le m_{e\nu T} \le m_{e\nu}$ (Prove it!)

• For $q\bar{q}' \to W^* \to e\nu$ there is a Jacobian peak.

- missing E_T

- missing E_T

W mass at hadron colliders

- W signature:
- Isolated high- $p_T \ e/\mu$
- missing E_T

theory must match level of precison e'(μ') e'(μ') w⁺ d g

Main backgrounds:

- QCD multijet
- $Z \rightarrow \ell \ell$
- $W \to \tau \nu \to \ell \nu \nu \nu$

- transverse mass

$$m_T = \sqrt{2E_T^{\ell} E_T (1 - \cos \varphi_{\ell\nu})}$$

- lepton transverse momentum _ E_T

- trans

 m_T

- lepto _ E_T

* Rather insensitive to \vec{p}_W * m_T has a significant resolution sensitivity

- transverse mass

$$m_T = \sqrt{2E_T^{\ell} E_T (1 - \cos \varphi_{\ell\nu})}$$

- lepton transverse momentum _ E_T

transverse mass

 m_T

 E_T

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\mathbf{p}_{\mathrm{eT}}} = \frac{4\mathbf{p}_{\mathrm{eT}}}{\mathbf{\hat{s}}\sqrt{1-4\mathbf{p}_{\mathrm{eT}}^2/\mathbf{\hat{s}}}} \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\cos\theta^*}$$

- lepto there is a Jacobian peak at $\mathbf{p_{eT}} = \mathbf{M_W}/2$

small detector smearing effect
significant p_T^W effect

- transverse mass

$$m_T = \sqrt{2E_T^{\ell} E_T (1 - \cos \varphi_{\ell\nu})}$$

- lepton transverse momentum _ E_T

- transverse mass

$$m_T = \sqrt{2E_T^{\ell} E_T (1 - \cos \varphi_{\ell\nu})}$$

- lepton transverse momentum _ E_T

D0 event selection:

- $-P_T^e > 25 \text{ GeV}$
- $-|\eta_e| < 1.05$
- $E_T > 25 \text{ GeV}$
- $50 < m_T < 200 \text{ GeV}$ - $E_T^{had} < 15 \text{ GeV}$

 M_W and Γ_W are measured fitting the distributions

M_W and Γ_W are measured fitting the distributions

 M_W and Γ_W are measured fitting the distributions

 M_W and Γ_W are measured fitting the distributions

Motivation:

"Elements" of a collision

VI. Cross section evaluation

Section in a hadron-hadron machine requires

we need to evaluate as precisely as we can the cross section

Phase space (art/science)

* The sum of final states is

$$d\Phi_n(ab \to 1\dots n) \equiv \delta^4(p_a + p_b - p_1 - \dots - p_n) \prod_{i=1}^n \frac{d^3 \vec{p_i}}{2E_i}$$

Lorentz invariant

* 3n - 4 integrals. With azimuthal symmetry $\implies 3n - 5$ integrals In a hadron collider we have 2 extra integrals ($x_{1,2}$)

n	3n-3		
2	3		
3	6		
4	9		
8	21		

Scattering amplitude evaluation

* We also need to evaluate $\overline{\sum} |\mathcal{M}|^2 (a_1 a_2 \to b_1 \dots b_n)$ with $\mathcal{M} = \sum_{i=1}^f \mathcal{M}_i$.

* If f(n) is large the "trace technique" becomes useless since we have to evaluate f(f+1)/2 cross terms $\text{Re}(\mathcal{M}_i^*\mathcal{M}_j)$.

* It then becomes advantageous to numerically evaluate $\mathcal{M}_i \implies \text{complexity}$ grows linearly with f.

* One efficient technique is to work in helicity basis $|\mathcal{M}|^2 = \sum_{\lambda_a \dots \lambda_n} |\mathcal{M}(\lambda_a \dots \lambda_n)|^2$

For fermions

in the representation
$$\gamma_5=\left(egin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}
ight)$$
 we write $\psi=\left(egin{array}{cc} \psi_- \\ \psi_+ \end{array}
ight)$

where ψ_{-} and ψ_{+} are Weyl spinors of negative and positive helicity.

* For instance, *u*-spinor with chiral components $u(p, \sigma)_{\pm} = \sqrt{p^0 \pm \sigma |\mathbf{p}|} \chi_{\sigma}(p)$, where

$$\chi_{+}(p) = \frac{1}{\sqrt{2|\mathbf{p}|(|\mathbf{p}|+p_{z})}} \begin{pmatrix} |\mathbf{p}|+p_{z} \\ p_{x}+ip_{y} \end{pmatrix} ; \ \chi_{-}(p) = \frac{1}{\sqrt{2|\mathbf{p}|(|\mathbf{p}|+p_{z})}} \begin{pmatrix} -p_{x}+ip_{y} \\ |\mathbf{p}|+p_{z} \end{pmatrix}$$

* The HELAS package has all elements need to evaluate Feynman diagrams defined as fortran routines. For instance, an incoming u(p, NH)-spinor is given by a simple subroutine call,

```
call IXXXXX(P,FMASS,NH,+1,PSI)
```

to compute the spinor v change $+1 \rightarrow -1$.

* Outgoing spinors are generate by $call IXXXXX(P, FMASS, NH, \pm 1, PSI)$

* the polarization vector of incoming vector bosons is call VXXXXX(P, VMASS, NHEL, -1, VC)

The package MADGRAPH can be used to generate SM and SUSY amplitudes!

- MADGRAPH can generate $2 \rightarrow 8$ processes
- MADGRAPH already sums over polarizations and colors
- MADGRAPH produces a ps file with the Feynman diagrams
- The package MADEVENT goes further and produces a complete Monte Carlo
- Interfaces for PYTHIA, HERWIG, and ROOT are available

http://madgraph.hep.uiuc.edu/

