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| . Basic facts

2. Standard Model examples




Disclaimer

® The goal is to treat some of the basic elements
aiming to make it easier to go to the literature

® Many details will not be mentioned

® Basic reference: Tao Han hep-ph/0508097

e Another reference: “QCD and Collider Physics” by
Ellis, Stirling and Webber.




Motivation

@ What we know:

L= Eiinctic T ‘ngctic T Lffv T T T [’EVVSB

@ SU(3). x SU(2)r, x U(1)y gauge interaction between fermions and gauge
bosons tested at 0.1% level.

@ Some information on the interactions between the gauge bosons

@ Lewsp has not been directly tested: origin of masses, flavor physics, ...
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LHC has already enough data to start
testing the SM and going beyond it

[PD]

L2 oS 95%CL limit
§ CMS measurement (stat®syst)

theory prediction
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. Collider parameters

* Relativity together with quantum mechanics lead to

L .
Ap At > — » only asymptotic states are observable
C

4

colliders are essential




* Basic parameters

|. Center-of-mass energy 1+2—X

(E1 + E5)? in the c.m. frame p; + ps = 0,
m% + m% + 2(E1E2 — ﬁl y ﬁg)

SEE2CM£(P1+P2)2={




* Basic parameters

|. Center-of-mass energy 1+2—X

[ (F1 + E»)? in the c.m. frame p; + ps = 0,
5= Eom = (p1+p2)” = { m? + m3 + 2(EEa — 1 - ).

2. Instantaneous luminosity L : event rate is proportional to 0

events — »C 0

RN

machine physics

number of particles

e beams are a collection of bunches \
Colliding beam 11119 f

frequency

transverse area



* Important rule of a thumb: o 1/E2CM —> L grows as ~~ E2CM

e Useful luminosity change of units

1033 ecm™ 2 s ' =1nb ts '~ 10 fb ! /year
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ATLAS Online Luminosity \s=7TeV
LHC Delivered
ATLAS Recorded
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Total Delivered: 5.61 fb™
Total Recorded: 5.25 fb™
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. eTe™ colliders

* Main advantages:

> e e interactions are well understood

> Initial charges are zero => to produce new states

> Scattering kinematics is well understood/constrained

> In the CM frame all energy available to produce new states
> |t is possible to polarize the initial beams.

* Main disadvantages:
> large synchroton radiation => linear machines
> |t is easier to produce spin-| states in the s-channel
> There are energy losses by bremstrahlung/beamsstrahlung
> The energy spread needs to be taken into account

dr

/dT% o(8) with 7 = V§/+/s
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* SM processes

- fpL
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E,>0.1E,

jcosf <0.85

()| J——
- loosf <0.8

ZZ
lcosd <08

— WW'y -
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lll. Hadron colliders

* protons are much heavier than electrons => higher CM energies
* higher luminosities can be achieved

* protons are composed of quarks and gluons => fewer
kinematical constraints

* protons are strongly interacting: collisions are messier

* strong interactions => large cross sections g¢ota1 =~ 100 mb

“Hard” Scattering

outgoing parton

underlying event 1 S underlying event

outgoing parton




1. Hadron collide z»r
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* QCD factorization theorem: for large transfer momentum we have

O'(AB — F X) = Z/XmdX2 fa/A(Xla Qz)fb/B(Xz, Qz) 5'(&]:) — F)
a,b

e _— /

inclusive distribution functions parton-parton scattering

* fi,/B(X, Q%)_is de b parton density in the hadron B carrying x of
the momentum o
characteristic scale
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Useful quantity:
0(s) =2 ap ) dvrdzs foya(x1)foyB(w2) 6(3)

= un S AT [ fosa(x) foyB(T/) 6(T5)

where T = X1X2

¥ / dr Tdﬁm (550 ()

{7} \

dimensionless

we define the parton-parton luminosity

T(ILZJ o T/S
S dr 140

/dz[f (@) O (/) + £ (2) £ (/)] 2
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V. Detectors

* Goal: measure position, time, momentum, energy, type,....
* modern detectors are very complex.

Muon Detectors Electromagnetic Calorimeters
N\

Solenoid Forward Calorimeters

End Cap Toroid

| Toros Inner Detector z )
Barrel Toroid Hadronic Calorimeters




* The signal of a particle depends on its interactions and decay length

E T E
d=(j3 CT)M ~ (300 ym) (10_12 S) M

* There are a few possibilities:

* Fast decay, eg, gluons hadronize in

thn ~ 1/Aqcp ~ 1/(200 MeV) ~ 3.3 x 107 %% s

energetic g/g produce jets




* The signal of a particle depends on its interactions and decay length

Run=15768 Evt=5906




e stable particles: (p, P, €

~, ) leave energy deposit and/or tracks
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e stable particles: (p, P, €, ) leave energy deposit and/or tracks

* Quasi-stable particles: behave like the stable ones
(7 > 10719 g, e.g. n,A,K%, e e, L K

* Short lived resonances decay promptly W=, Z(1072% 5); 7% p, ...

* Displaced vertices:

BY%=, D= 7% (1~ 1072 s; er ~ 100 um). K2 — ntn~ w/ et ~ 2.7 ¢cm

» Neutral weakly interacting particles leave no signal (V)




* More complex analyses can be made

Leptons Vertexing Tracking ECAL Muon Cham.
X

X
v/ X
X

l

X < B3

Ve, V), Ur
Quarks
u,d, s
c— D
b— B
t — bW
(Gauge bosons

L

< B T < X




* Typical detector performance:
> Coverage: Nerack| < 2.5 |Neal] < 5.

> Tracker momentum resolution

> ECAL resolution:

AE

> HCAL resolution

AE




> Vertexing performance:

73 (1um)
(pr/ GeV) Ve

Adg =116

displaced
tracks

Secondary
vertex

X
prompt tracks . )
Z = beam direction

115
Azg =87 D (pm)

(pt/ GeV) Vsin® 0




displaced

tracks
tructed vertices

(ellipses have 20 o size for

visibility reasons)

Event with 20
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* Trigger: for large events rates, eg,at LHC it is 40 MHz, it is
impossible to store all events.

e At the LHC a event rate of 200 Hz can be stored!!!

* the trigger is a fast selection to reduce the event rate for writing.

* There are several layers of decision (level-1, level-2, etc)

N
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ATLAS Trigger Operations

e 20 medium (x0.33) /.J:

® mui8 (x0.33)
4 tau100_medium (x1.5)
v e10_medium_mué6 (x1.2)

* xXe60 noMu
¢+ j240 adtc EFFS
2e12 medium

Rate [Hz]

S

1 1 1 1 | 1 1 | I 1
0.8 1 1.2

Instantenous luminosity [1 0*cm2s]




V. Useful kinematical variables

* Subprocess center-of-mass energy: in the LAB frame

/5

plél\/l —= 7(X1 T X2, 07 07X1 — XZ) — S = X1X28

e Rapidity/pseudo-rapidity: E(1, 3sin 6 cos ¢, 3 sin 8 sin ¢, 3 cos 0)
1+ cosf

for 83— 1

11
>N = — 10
g 2 g1—6086’

* The CM and LAB frames are related by

* * ]_ X1
Y=Y +Vem. =Y + =log—

“~_ 2 X2

center-of-mass rapidity
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* A useful change of variables is

3~
* Largely used due to _dEp — dpxdpy dp.

— dprdoed
R prdprayqay

with the ¢ (azimuthal angle), PT (transverse momentum) and y
being invariant under longitudinal boosts

e It is usual to represent deposit of energy in the (7, ¢) plane

and the separation AR = /A2 + An?
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Z — pu~pT 4+ 3 jets

Run Number 158466, Event Number 4174272
Date: 2010-07-02 17:49:13 CEST




Invariant mass

graph 2

e Consider an unstable particle (X = Z, W=, t) decaying X — ab...

do 1

dM,p, . (M2, —M%)? + T3 M

and exhibits a peak for M2, = (pa+pp+...)2=(>.; pi )? ~M%

e For the same reason the production ab — X
for Mﬁb ~ 1\/[%(

anything exhibits a peak

e If the decays products are observable =— we can reconstruct M,y ., e.g.

Z — ete™, bb, ...




e cte” — Z: in this case M1, = /s
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Energy, GeV




e At the CMS pp — Z +X — u ™

N
-
-
o

I I | | I | | | I | | | I l I I I I I

JLdt=36 pb'at \'s =7 TeV CMS

Candidates/GeV

- Data

Signal (POWHEG)
| Background

| | | L |

60 80 100 120 140
M, [GeV]

much more can be done with dileptons!



Events/GeV

CMS Preliminary

\s=7TeV, L =40pb’
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Transverse mass

e Consider the process pp - WX — erX

gy — (Ee + Eu)2 — (f)eT + f)uT)z — (pez = puz)z .

However, p, 1s not observable.

e We can infer p,p ~ ]fT — — > pr (observed). Analogously B, = E,

uses all we can measure in the transverse plane

e We define the transverse mass [UAI] \
2

m?2 1 = (Eer +Eu1)? — (Per + Put)? = 2Pet - Pur ~ 2EerH (1 — cOSPe,, )

e In general 0 < me, T < mg, (Prove it!)




e For q¢ — W* — ev there is a Jacobian peak.

do I'w Mw

1
X
(m2, — M3y )? + Ty My, \/mgy —m?

2
dm ov. T

3
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ATLAS Preliminary e data2011 As=7TeV)
[ ] W pv (Alpgen)
IL dt=1.02 fb [ ] QCD (template)

BN Z - up

- L ITwW-oav
B 1t + single top
C 1Z-1
Dibosons

Statistical errors only
MC normalized to data

X
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VWV mass at hadron colliders

WV signature:

- Isolated high-pr e/

- missing F+

Transverse plane
wrt. the beam axis

[\~ Neutrino

Underlying event

t e8ry must match level o pl"eCISO%.
i

1)




theory must match level of precison

)
W mass at hadron colliders \@FY /NVWWY
-
WV sigr

- |solat

—

- MISSt Tt} neutrino_

| &
-~ ~

Hadronie recoil
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VWV mass at hadron colliders

WV signature:

- Isolated high-pr e/

- missing F+

Transverse plane
wrt. the beam axis

[\~ Neutrino

Underlying event

t e8ry must match level o pl"eCISO%.
i

Main backgrounds:
- QCD multijet
-4 — U

-W — 71 — fvvv

1)




Kinematical variables:

- transverse mass

mp = \/QE FEr(1 — cos pp,)

- Iepton transverse momentum

_Er




Kinematical variables:

- trans

# Rather insensitive to pw
* my has a significant resolution
sensitivity




Kinematical variables:

- transverse mass

mp = \/QE FEr(1 — cos pp,)

- Iepton transverse momentum

_Er




Kinematical variables:

- transverse mass

dé 4P do
dp_ §\/1 _ 4pgT/§ d cos 6*

mr

- lepto there is a at per = Mw/2

prle) (GeV)

* small detector smearing effect
# significant p) effect




Kinematical variables:

- transverse mass

mp = \/QE FEr(1 — cos pp,)

- Iepton transverse momentum

_Er




Kinematical variables:

- transverse mass

mr = \/ZEf}ET(l — COS Yy, )

- Iepton transverse momentum

_Er

DO event selection:

-P7 > 25 GeV
-|me| < 1.05

-ET > 25 GeV

- 50 < mpr < 200 GeV
-Elh < 15 GeV




Events/0.5 GeV

Events/0.5 GeV

My and Ty are measured fitting the distributions

DO Preliminary, 1 fb™

[l

—— DATA
- FAST MC

B W->tv
2> | m = 80.401 £ 0.023 GeV (stat)

Fit Region QCD
2/dof = 48/49 ) .
‘ & Fit range: 65 < mp < 90 GeV
’#_

60 70 ' 100
my, GeV

llllllllllll

Electron p; method

- DO Preliminary, 1 fb’

—— DATA
- FAST MC

B W->tv
Z->ee m,, = 80.400 + 0.027 GeV (stat

Fit Region QCD | |
y*/dof = 39/31 Fit range: 32 < py < 48 GeV

lllllllll

[Cwiok]



My and Ty are measured fitting the distributions

W-Boson Mass [GeV]

|

TEVATRON . 80.420 + 0.031

Events/0.5 GeV

LEP2 80.376 = 0.033 B GeV (stat)
0 GeV

Average 80.399 = 0.023

+*/DoF: 0.9 / 1

NuTeV 80.136 = 0.084

O\‘{l{lllllll

o

LEP1/SLD 80.362 + 0.032
LEP1/SLD/m, 80.363 = 0.020

|

80 80.2 80.6

July 2011

Events/0.5 GeV

\lthlHjl\lllllll
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Events/0.5 GeV

Events/0.5 GeV

My and Ty are measured fitting the distributions

DO Preliminary, 1 fb™

[l

—— DATA
- FAST MC

B W->tv
2> | m = 80.401 £ 0.023 GeV (stat)

Fit Region QCD
2/dof = 48/49 ) .
‘ & Fit range: 65 < mp < 90 GeV
’#_

60 70 ' 100
my, GeV

llllllllllll

Electron p; method

- DO Preliminary, 1 fb’

—— DATA
- FAST MC

B W->tv
Z->ee m,, = 80.400 + 0.027 GeV (stat

Fit Region QCD | |
y*/dof = 39/31 Fit range: 32 < py < 48 GeV
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Events/0.5 GeV

Events/0.5 GeV

1 lllllllllll
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My and Ty are measured fitting the distributions

|

DO Prelif

ORIIIIII

o

W-Boson Width [GeV]

TEVATRON
LEP2

Average

pp indirect
LEP1/SLD

LEP1/SLD/m,

2.046 = 0.049
2.195 + 0.083
2.085 + 0.042

~*/DOF: 2.4 / 1

2.141 = 0.057
2.091 = 0.003
2.091 = 0.002

2.4

July 2011

(&)

3 GeV (stat)
D0 GeV

p7 GeV (stat

_1I8 GeV




Motivation: “Elements” of a collision

|. High-Q Scattering °: . 2. Parton Shower

/ N P approximation
field theory A ' 9.
o N\

very inclusiv

3. Hadronization ; ' 4. Underlying Event

model model




VI1. Cross section evaluation

% Evaluating cross section in a hadron-hadron machine requires

o = /dazlda:g Z fay/p(%1) fay/p(T2)

subp

1
25(2m)3n—4

Z|M\2(a1a2 — b1 . a bn)

phase space integration scattering amplitude

e need to evaluate as precisely as we can the cross section




Phase Space (art/science)

% The sum of final states is

4 d°p;
d®n(ab—1...n) =6"(pa+pp—P1— ... — Pp)

/ =1 2
=1

Lorentz invariant

* 3n — 4 integrals.

* With azimuthal symmetry
—> 3n — 5 Integrals

¥ In a hadron collider we have 2

extra integrals (z )




Scattering amplitude evaluation

# We also need to evaluate > | M|?(a1az — b1 ...b,) With M = sz:l M; .

# If f (n) is large the “trace technique” becomes useless since we have to
evaluate f(f + 1)/2 cross terms Re(M; M ).

# |t then becomes advantageous to numerically evaluate M; =— complexity
grows linearly with f.

# One efficient technique is to work in helicity basis
IMIZ =30 M Qa - AR)[2

# For fermions

in the representation ~; = ( _(1) (1) ) we write ) = ( :ﬁ_ )
_+_

where ¢_ and ¢ are Weyl spinors of negative and positive helicity.




# For instance, u-spinor with chiral components u(p, o)+ = - o|p| xo(P) ,
where

X+(p) = ( ) ' x-(p) = v 2|p|(|p| + p2) (

Dz + Dy p| + -

V2/p|(p| + p2)

# The HELAS package has all elements need to evaluate Feynman diagrams
defined as fortran routines. For instance, an incoming u(p, N H)-spinor is
given by a simple subroutine call,

to compute the spinor v change +1 — —1.
# Qutgoing spinors are generate by

# the polarization vector of incoming vector bosons is




# The package MADGRAPH can be used to generate SM and SUSY
amplitudes!

o MADGRAPH can generate 2 — 8 processes
MADGRAPH already sums over polarizations and colors

MADGRAPH produces a ps file with the Feynman diagrams

The package MADEVENT goes further and produces a complete Monte
Carlo

Interfaces for PYTHIA, HERWIG, and ROOT are available

http://madgraph.hep.uiuc.edu/




