2.

I. QCD corrections
II. Jets
III. Hunting the Higgs at the LHC
IV. Top quark mass measurement

Motivation

- In order to have precise predictions working at LO might not be enough

Motivation

- In order to have precise predictions working at LO might not be enough

QCD corrections

Total Cross Section
\Rightarrow Can we use pQCD despite confinement? "YES"

* The γ / Z virtuality is $Q=\sqrt{s}$

* Production occurs at a distance $\simeq \frac{1}{Q}$
* Q is large \Longrightarrow pQCD appli-
cable
\Rightarrow Hadronization changes quarks and gluons to hadrons.
\Rightarrow Hadronization takes place at a scale $\frac{1}{\Lambda}$.
\Rightarrow The change in the outgoing state occurs too late to modify the probability of the event to happen!
\Rightarrow Details of the final state certainly are changed.

Lowest Order Result (α_{s}^{0})

\Rightarrow For simplicity, we neglect the Z contribution (i.e. $\sqrt{s} \ll M_{Z}$)

$$
\frac{d \sigma_{0}}{d \cos \theta}=\frac{\pi \alpha^{2} Q_{f}^{2}}{2 s} N_{c}\left(1+\cos ^{2} \theta\right) \quad \Longrightarrow \quad \sigma_{0}=\frac{4 \pi \alpha^{2}}{3 s} N_{c} Q_{f}^{2}
$$

leading to

$$
R_{0} \equiv \frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=N_{c} \sum_{q} Q_{q}^{2}
$$

\Rightarrow At the Z pole (i.e. neglecting γ), we have

$$
R_{0}=N_{c} \frac{\sum_{q}\left(A_{q}^{2}+V_{q}^{2}\right)}{A_{\mu}^{2}+V_{\mu}^{2}}
$$

\Rightarrow Writing $\mathcal{M}^{P}=\mathcal{M}_{0}^{P}+\mathcal{M}_{1}^{P}$, the α_{s} contribution has the form

$$
\int d \Phi_{2}\left[2 \operatorname{Re}\left(\mathcal{M}_{0}^{2 \rightarrow 2}\right)^{\dagger} \mathcal{M}_{1}^{2 \rightarrow 2}\right]+\int d \Phi_{3}\left|\mathcal{M}_{0}^{2 \rightarrow 3}\right|^{2}
$$

\Rightarrow After adding all contributions the UV divergences cancel out (Ward identity). The same happens for the IR ones!

$$
R=R_{0}\left(1+\frac{\alpha_{s}(\mu)}{\pi}\right) \longrightarrow R_{0}\left(1+\frac{\alpha_{s}(\sqrt{s})}{\pi}\right)
$$

\Rightarrow Unlike UV divergences, there is no renormalization for the IR ones. They indicate sensitivity to long range physics like masses, hadronization process, etc.
\Rightarrow The singularities are not physical; they indicate the breakdown of the perturbative approach. Quarks and gluons are never on mass-shell-particles and we can not ignore the effects of confinement at a scale $\simeq 1 \mathrm{GeV}$.

General form of the IR divergences for $p_{g} \rightarrow 0$

$$
\sigma^{q \bar{q} g}=\frac{2 \alpha_{s}}{3 \pi} \sigma_{q \bar{q}} \int d \cos \theta_{q g} \frac{d E_{g}}{E_{g}} \frac{4}{\left(1-\cos \theta_{q g}\right)\left(1+\cos \theta_{q g}\right)}
$$

NLO in hadron colliders

\Rightarrow The parton model expression for cross sections is

$$
\begin{aligned}
\sigma=\sum_{i j} \frac{1}{1+\delta_{i j}} \int d x_{1} d x_{2} \quad & \left\{f_{i}\left(x_{1}, Q_{F}^{2}\right) f_{j}\left(x_{2}, Q_{F}^{2}\right)+i \leftrightarrow j\right\} \otimes \\
& \hat{\sigma}_{i j}\left(\alpha_{s}\left(Q_{R}^{2}\right), Q_{R}^{2}, Q_{F}^{2} ; x_{1} x_{2} s\right)
\end{aligned}
$$

\Rightarrow Expanding the pdf's and $\hat{\sigma}\left(X=X^{(0)}+X^{(1)}+\cdots\right)$ the lowest order term is
$\sigma=\sum_{i j} \frac{1}{1+\delta_{i j}} \int d x_{1} d x_{2}\left\{f_{i}^{(0)}\left(x_{1}\right) f_{j}^{(0)}\left(x_{2}\right)+i \leftrightarrow j\right\} \otimes \hat{\sigma}_{i j}^{(0)}\left(x_{1} x_{2} s\right)$
\Rightarrow The NLO contribution is obtained through

$$
\left[f_{i}^{(1)} f_{j}^{(0)}+f_{i}^{(0)} f_{j}^{(1)}+i \leftrightarrow j\right] \times \hat{\sigma}^{(0)} \oplus\left[f_{i}^{(0)} f_{j}^{(0)}+i \leftrightarrow j\right] \times \hat{\sigma}^{(1)}
$$

\Rightarrow The red term contains collinear divergences that are canceled by the divergences in the blue term.

- Scales:

- The evaluation of $\hat{\sigma}$ contains a UV divergence $=>$ renormalization
$=>$ remnant of the process is the renormalization scale μ_{R}
- Full calculation should not depend on $\mu_{R}=>$ we can estimate the higher order corrections by the μ_{R} dependence
- At each order, the subprocess cross section and the PDF's have a residual factorization scale dependence on μ_{F}
- The residual scale dependence should improve with higher order calculations

- Scales:

- The evaluation of $\hat{\sigma}$ contains a UV divergence => renormalization $=>$ remnant of the process is the renormalization scale μ_{R}
- Full calculation should not depend on $\mu_{R}=>$ we can estimate the higher order corrections by the μ_{R} dependence
- At each order, the subprocess cross section and the PDF's have a residual factorization scale dependence on μ_{F}

(C. Anastasiou, L. Dixon, K. Melnikov, F. Petriello, PRL 91 (2003) 182002)
proton - (anti)proton cross sections
- many available - automatic NLO

II. Jets

\Rightarrow Can we obtain more information on the hadron production besides the total cross section?
\Rightarrow We expect that soft process don't change completely the high energy features \Longrightarrow a spray of hadrons follows the direction of the original quarks and gluons.

Three jet event:

- why not 4 ?
- Which particles belong to a jet? - how to get
$p_{\text {parton }} \simeq p_{\text {jet }}$?

Not an easy task:

Proper "size" of jets.

Overlapping jets.

Criteria for a good jet recipe: [Snowmass]

I. Simple to implement in an experimental analysis
2. Simple to implement in a theoretical calculation
3. Defined at any order of perturbation theory
4. Yields finite cross sections at any order of PT
5. Yields a cross section rather insensitive to hadronization

A few jet algorithms

- Three popular jet algorithms are kT , anti-kT, and Cambridge/Aachen
- The distance and rule to join objets is

$$
\mathbf{d}_{\mathbf{i j}}=\min \left[\mathbf{p}_{\mathbf{T i}}^{2 \alpha}, \mathbf{p}_{\mathbf{T i}}^{2 \alpha}\right]\left(\frac{\Delta \mathbf{R}_{\mathbf{i}}}{\mathbf{R}}\right)^{2} \quad \text { and } \quad \mathbf{d}_{\mathbf{i B}}=\mathbf{p}_{\mathbf{T i}}^{2 \alpha}
$$

with $\Delta \mathbf{R}_{\mathrm{ij}}=\sqrt{\Delta \eta_{\mathrm{ij}}^{2}+\Delta \varphi_{\mathrm{ij}}^{2}}$
repeatedly combine objets untild d_{iB} is the smaller distance.
Then call it a jet, remove from the list and start again
-The choices are: $\mathrm{kT}(\alpha=1)$; anti-kT $(\alpha=-1)$;
C/A $(\alpha=0)$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G.Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G.Salam] $\quad R=1$

- Example with C/A algorithm [borrow from G. Salam] $\quad R=1$

\Rightarrow This expression also describes well the y dependence

Jet production

- The basic expression for 2 to 2 processes is

$$
\frac{d \sigma}{d p_{T}^{2}}=\sum_{i j} \int d x_{1} d x_{2} \frac{f_{i}\left(x_{1}, Q_{F}^{2}\right) f_{j}\left(x_{2}, Q_{F}^{2}\right)}{\left(1+\delta_{i j}\right)} \times \frac{d \hat{\sigma}}{d p_{T}^{2}}
$$

$\not+$ In the jet-jet CMS $\Longrightarrow d y_{1} d y_{2} d p_{T}^{2}=\frac{1}{2} s d x_{1} d x_{2} d \cos \theta^{*}$

$$
\frac{d^{3} \sigma}{d y_{1} d y_{2} d p_{T}^{2}}=\frac{1}{16 \pi s^{2}} \sum_{i j} \frac{f_{i}\left(x_{1}, Q_{F}^{2}\right) f_{j}\left(x_{2}, Q_{F}^{2}\right)}{\left(1+\delta_{i j}\right) x_{1} x_{2}} \times \bar{\sum}|M(i j \rightarrow k l)|^{2}
$$

with

$$
x_{1}=\frac{x_{T}}{2}\left(e^{y_{1}}+e^{y_{2}}\right) \quad ; \quad x_{2}=\frac{x_{T}}{2}\left(e^{-y_{1}}+e^{-y_{2}}\right) \quad \mathbf{x}_{\mathbf{T}}=\frac{2 \mathbf{p}_{\mathbf{T}}}{\sqrt{\mathbf{s}}}
$$

* The LO processes leading to jets are (gluon in the t-channel)

Process	$\frac{32 \pi^{2}}{\alpha_{s}^{2}} \frac{d \hat{\sigma}}{d \Omega}$	at 90 degrees
$q q^{\prime} \rightarrow q q^{\prime}$	$\frac{1}{2 \hat{s}} \frac{4}{9} \frac{\hat{s}^{2}+\hat{u}^{2}}{t^{2}}$	2.2
$q q \rightarrow q q$	$\frac{1}{2} \frac{1}{2 \hat{s}}\left[\frac{4}{9}\left(\frac{\hat{s}^{2}+\hat{u}^{2}}{\hat{t}^{2}}+\frac{\hat{s}^{2}+\hat{t}^{2}}{\hat{u}^{2}}\right)-\frac{8}{27} \frac{\hat{s}^{2}}{\hat{u} \hat{t}}\right]$	3.3
$q \bar{q} \rightarrow q^{\prime} \bar{q}^{\prime}$	$\frac{1}{2 \hat{s}} \frac{4}{9} \frac{\hat{t}^{2}+\hat{u}^{2}}{\hat{s}^{2}}$	0.2
$q \bar{q} \rightarrow q \bar{q}$	$\frac{1}{2 \hat{s}}\left[\frac{4}{9}\left(\frac{\hat{s}^{2}+\hat{u}^{2}}{\hat{t}^{2}}+\frac{\hat{t}^{2}+\hat{u}^{2}}{\hat{s}^{2}}\right)-\frac{8}{27} \frac{\hat{u}^{2}}{\hat{s} \hat{t}}\right]$	2.6
$q \bar{q} \rightarrow g g$	$\frac{1}{2} \frac{1}{2 \hat{s}}\left[\frac{32}{27} \frac{\hat{t}^{2}+\hat{u}^{2}}{\hat{t} \hat{u}}-\frac{8}{3} \frac{\hat{t}^{2}+\hat{u}^{2}}{\hat{L}^{2}}\right]$	1.0
$g g \rightarrow q \bar{q}$	$\frac{1}{2 \hat{s}}\left[\frac{1}{6} \frac{\hat{t}^{2}+\hat{u}^{2}}{\hat{t} \hat{u}}-\frac{3}{8} \frac{\hat{t}^{2}+\hat{u}^{2}}{\hat{s}^{2}}\right]$	0.1
$g q \rightarrow g q$	$\frac{1}{2 \hat{s}}\left[-\frac{4}{9} \frac{\hat{s}^{2}+\hat{u}^{2}}{\hat{s} \hat{u}}+\frac{\hat{u}^{2}+\hat{s}^{2}}{\hat{t}^{2}}\right]$	6.1
$g g \rightarrow g g$	$\frac{1}{2} \frac{1}{2 \hat{s}} \frac{9}{2}\left(3-\frac{\hat{t} \hat{u}}{\hat{s}}-\frac{\hat{s} \hat{s}^{2}}{\hat{t}^{2}}-\frac{\hat{s} \hat{t}}{\hat{u}^{2}}\right)$	30.4

with $\hat{t}=-\hat{s}(1-\cos \theta) / 2$ and $\hat{u}=-\hat{s}(1+\cos \theta) / 2$

Tevatron results

the inclusive jet cross section does agree with NLO QCD over 8 orders of magnitude!

-Let's look the results without the dirt trick of log plots

PHYSICAL REVIEW LETTERS IO1, 062001 (2008)

Jets at the LHC

the inclusive jet cross section is nicely described by NLO QCD

a more serious comparison

V. Hunting the SM Higgs

$127-600600 x$

Chanel	rater	res'n
$H \rightarrow 88$	$110-150$	$1-3 \%$
$H \rightarrow$ CT	No-NT	20%
H +65	$10-135$	10\%
$H \rightarrow$	600	20\%

V. Hunting the SM Higgs

- Higgs production mechanisms and cross sections

- We must take into account the H decays

$$
H \rightarrow W^{+} W^{-} \rightarrow \ell^{+} \ell^{-} \mathbb{E}_{T}+0,1,2 \text { jets }
$$

- Cuts used in the analyses

m_{H}	$p_{\mathrm{T}}^{\ell, \max }$	$p_{\mathrm{T}}^{\ell, \min }$	$m_{\ell \ell}$	$\Delta \phi_{\ell \ell}$	$m_{T}^{\ell \ell E_{\mathrm{T}}^{\text {miss }}}$
$\left[\mathrm{GeV} / c^{2}\right]$	$[\mathrm{GeV} / c]$	$[\mathrm{GeV} / c]$	$\left[\mathrm{GeV} / c^{2}\right]$	$[\mathrm{dg}]$.	$\left[\mathrm{GeV} / c^{2}\right]$
	$>$	$>$	$<$	$<$	$[]$,
120	20	$10(15)$	40	115	$[80,120]$
130	25	$10(15)$	45	90	$[80,125]$
160	30	25	50	60	$[90,160]$
200	40	25	90	100	$[120,200]$
250	55	25	150	140	$[120,250]$
300	70	25	200	175	$[120,300]$
400	90	25	300	175	$[120,400]$

$$
H \rightarrow W^{+} W^{-} \rightarrow \ell^{+} \ell^{-} \mathbb{E}_{T}+0,1,2 \text { jets }
$$

- Cuts used in the analyses

m_{H}	$p_{\mathrm{T}}^{\ell, \max }$	$p_{\mathrm{T}}^{\ell, \min }$	$m_{\ell \ell}$	$\Delta \phi_{\ell \ell}$	$m_{T}^{\ell \ell E_{\mathrm{T}}^{\text {miss }}}$
$\left[\mathrm{GeV} / c^{2}\right]$	$[\mathrm{GeV} / c]$	$[\mathrm{GeV} / c]$	$\left[\mathrm{GeV} / c^{2}\right]$	$[\mathrm{dg}]$.	$\left[\mathrm{GeV} / c^{2}\right]$
	$>$	$>$	$<$	$<$	$[]$,
120	20	$10(15)$	40	115	$[80,120]$
130	25	$10(15)$	45	90	$[80,125]$
160	30	25	50	60	$[90,160]$
200	40	25	90	100	$[120,200]$
250	55	25	150	140	$[120,250]$
300	70	25	200	175	$[120,300]$
400	90	25	300	175	$[120,400]$

$$
H \rightarrow W^{+} W^{-} \rightarrow \ell^{+} \ell^{-} \mathbb{E}_{T}+0,1,2 \text { jets }
$$

- Cuts used in the analyses

m_{H}	$p_{\mathrm{T}}^{\ell, \max }$	$p_{\mathrm{T}}^{\ell, \min }$	$m_{\ell \ell}$	$\Delta \phi_{\ell \ell}$	$m_{T}^{\ell \ell E_{\mathrm{T}}^{\text {miss }}}$
$\left[\mathrm{GeV} / c^{2}\right]$	$[\mathrm{GeV} / c]$	$[\mathrm{GeV} / c]$	$\left[\mathrm{GeV} / c^{2}\right]$	$[\mathrm{dg}]$.	$\left[\mathrm{GeV} / c^{2}\right]$
	$>$	$>$	$<$	$<$	$[]$,
120	20	$10(15)$	40	115	$[80,120]$
130	25	$10(15)$	45	90	$[80,125]$
160	30	25	50	60	$[90,160]$
200	40	25	90	100	$[120,200]$
250	55	25	150	140	$[120,250]$
300	70	25	200	175	$[120,300]$
400	90	25	300	175	$[120,400]$

$H \rightarrow \gamma \gamma$

- Low branching ratio but great mass resolution (similar to 4 leptons)
- Useful in the range $110<M_{H}<150 \mathrm{GeV}$
- requirement: two energetic photons
- signal is an excess over a "smooth" falling background
- Main backgrounds: $p p \rightarrow \gamma \gamma ; p p \rightarrow \gamma$ jet $; ; p p \rightarrow$ jet + jet
- Tight photon requirements

Observed limits

Observed limits

Combining all search channels

Combining all channels

Light Higgs production via WBF
 (good for 14 TeV)

* We can tag the final state jets in $\mathbf{q q} \rightarrow \mathbf{H q q} \rightarrow \mathbf{H j j}$
* Let's focus on $\mathbf{H} \rightarrow \tau^{+} \tau^{-} \rightarrow \mathbf{e}^{\mp} \mu^{ \pm} \boldsymbol{p}_{T}$
* The main backgrounds are (write the subprocesses)
- $\mathbf{t} \overline{\mathbf{t}}+\mathbf{n}$ jets with $n=0,1,2$. The extra jet is a tagging jet.
- $\mathbf{b} \bar{b} \mathbf{j} j$ with $\mathbf{b} \rightarrow \nu \ell \mathbf{c}$
- QCD $\tau \tau$ jj that are higher order of DY $\mathbf{Z} \rightarrow \tau \tau$
- EW $\tau \tau \mathrm{j}$: WBF of Z 's
- QCD and EW WWjj production

* The main cuts are:

- Rapidity gap and acceptance cuts

$$
\begin{gathered}
p_{T_{j}} \geq 20 \mathrm{GeV}, \quad\left|\eta_{j}\right| \leq 5.0, \quad \Delta R_{j j} \geq 0.7 \\
p_{T_{\ell}} \geq 10 \mathrm{GeV}, \quad\left|\eta_{\ell}\right| \leq 2.5, \Delta R_{j \ell} \geq 0.7 \\
\Delta R_{e \mu} \geq 0.4 \\
\eta_{j, \text { min }}+0.7<\eta_{\ell_{1,2}}<\eta_{j, \text { max }}-0.7 \\
\eta_{j_{1}} \cdot \eta_{j_{2}}<0 \\
\Delta \eta_{\text {tags }}=\left|\eta_{j_{1}}-\eta_{j_{2}}\right| \geq 4.4
\end{gathered}
$$

- b-veto:
$\mathbf{p}_{\mathrm{T}_{\mathrm{b}}}>20 \mathrm{GeV}, \quad \eta_{\mathrm{j}, \min }<\eta_{\mathrm{b}}<\eta_{\mathrm{j}, \max }$.
- Missing transverse momentum $\not \boldsymbol{p}_{T}>\mathbf{3 0} \mathrm{GeV}$
- $\mathrm{M}_{\mathrm{jj}}>800 \mathrm{GeV}$

- $\tau \tau$ reconstruction: $\mathbf{M}_{\tau \tau}=\mathrm{m}_{\mathrm{e} \mu} / \sqrt{\mathbf{x}_{\tau_{1}} \mathbf{x}_{\tau_{2}}}$

$$
\begin{aligned}
& \cos \phi_{e \mu}>-0.9 \\
& x_{\tau_{1}}, x_{\tau_{2}}>0 \\
& x_{\tau_{1}}^{2}+x_{\tau_{2}}^{2}<1
\end{aligned}
$$

- Lepton correlations: $\triangle \mathrm{R}_{\mathrm{e} \mu}<\mathbf{2 . 6}$
- minijet veto:

$$
\mathbf{p}_{\mathrm{Tj}}^{\text {veto }}>\mathbf{p}_{\mathbf{T}, \text { veto }} ; \eta_{\mathrm{j}, \min }^{\mathrm{tag}}<\eta_{\mathrm{j}}^{\text {veto }}<\eta_{\mathrm{j}, \max }^{\mathrm{tag}}
$$

* Effect of the cuts for $\mathrm{M}_{\mathrm{H}}=120 \mathrm{GeV}$ and a bins $\pm 10 \mathrm{GeV}$

	$H \rightarrow \tau \tau$	QCD	EW			QCD	EW	
cuts	signal	$\tau \tau j j$	$\tau \tau j j$	$t \bar{t}+j e t s$	$b \bar{b} j j$	$W W j j$	$W W j j$	S/B
forward tags	1.34	4.7	0.18	45	8.2	0.18	0.11	$1 / 44$
$+b$ veto				2.6				$1 / 12$
$+\not p_{T}$	1.17	2.3	0.12	2.0	0.28	0.12	0.08	$1 / 4.1$
$+M_{j j}$	0.92	0.67	0.10	0.53	0.13	0.049	0.073	$1 / 1.7$
+ non τ reject.	0.87	0.58	0.10	0.09	0.10	0.009	0.012	$1 / 1$
$+\triangle R_{e \mu}$	0.84	0.52	0.086	0.087	0.028	0.009	0.011	$1.1 / 1$
+ ID effic. $(\times 0.67)$	0.56	0.34	0.058	0.058	0.019	0.006	0.008	$1.1 / 1$
$P_{\text {surv }, 20}$	$\times 0.89$	$\times 0.29$	$\times 0.75$	$\times 0.29$	$\times 0.29$	$\times 0.29$	$\times 0.75$	-
+ minijet veto	0.50	0.100	0.043	0.017	0.006	0.002	0.006	$2.7 / 1$

* Contamination from $\mathbf{H} \rightarrow \mathbf{W W}$

M_{H}	115	120	125	130	135	140	145	150
$\mathrm{~B}(H \rightarrow \tau \tau) \cdot \sigma(\mathrm{fb})$	0.93	0.84	0.74	0.62	0.51	0.39	0.27	0.19
$\mathrm{~B}(H \rightarrow W W) \cdot \sigma(\mathrm{fb})$	0.015	0.024	0.034	0.045	0.057	0.067	0.072	0.076

* Even after full simulation the Higgs signal is nice
$* \sim \tau$ channel

* WW channel

IV.Top mass measurement

Top mass measurement in $\mathbf{t} \overline{\mathbf{t}} \rightarrow \mathbf{j j b}(\mathbf{e} / \mu) \nu \mathbf{b}$

* Main background and their size

Process	$\sigma(\mathrm{pb})$
signal	250
$\mathbf{b b} \rightarrow \ell \nu+$ jets	$\mathbf{2 . 2 \times \mathbf { 1 0 } ^ { \mathbf { 6 } }}$
$\mathbf{W}+$ jets $\rightarrow \ell \nu+$ jets	$\mathbf{7 . 8} \times \mathbf{1 0}^{\mathbf{3}}$
$\mathbf{Z}+$ jets $\rightarrow \ell^{+} \ell^{-}+$jets	$\mathbf{7 . 8} \times \mathbf{1 0}^{\mathbf{3}}$
$\mathbf{W W} \rightarrow \ell \nu+$ jets	$\mathbf{1 7 . 1}$
$\mathbf{W Z} \rightarrow \ell \nu+$ jets	$\mathbf{3 . 4}$
$\mathbf{Z Z} \rightarrow \ell^{+} \ell^{-}+$jets	$\mathbf{9 . 2}$

* $S / B \simeq \mathbf{1 0}^{-4}$ This is not as bad as it looks.
* Event selection
- 1 isolated $\mathbf{e}^{ \pm}$or $\mu^{ \pm}$with $\mathbf{p}_{\mathrm{T}}>20 \mathrm{GeV}$ and $|\eta|<2.5$
- $\mathbb{E}_{T}>20 \mathrm{GeV}$.
- 2 tagged \mathbf{b} quarks with $\mathbf{p}_{\mathbf{T}}>40 \mathrm{GeV}$ and $|\eta|<2.5$
- 2 light jets with $\mathbf{p}_{\mathbf{T}}>40 \mathrm{GeV}$ and $|\eta|<2.5$
* After cuts
$\mathrm{S} / \mathrm{B} \simeq 78$
* 87 k events for $10 \mathrm{fb}^{-1}$

Process	Cross-section (pb)	Total efficiency $(\%)$
$t \bar{t}$ signal	250	3.5
$b \bar{b} \rightarrow l \nu+j$ ets	2.2×10^{6}	3×10^{-8}
$W+$ jets $\rightarrow l \nu+$ jets	7.8×10^{3}	2×10^{-4}
$Z+$ jets $\rightarrow l^{+} l^{-}+$jets	1.2×10^{3}	6×10^{-5}
$W W \rightarrow l \nu+$ jets	17.1	7×10^{-3}
$W Z \rightarrow l \nu+$ jets	3.4	1×10^{-2}
$Z Z \rightarrow l^{+} l^{-}+$jets	9.2	3×10^{-3}

* Top quark mass from $t \rightarrow \mathbf{b j j}$
- The event present ≥ 4 jets (ISR and FSR)
- Recontruct the W :
$\left|\mathrm{M}_{\mathrm{jj}}-\mathrm{M}_{\mathrm{W}}^{\mathrm{PDG}}\right|<\mathbf{2 0} \mathrm{GeV}$ (purity 66\%)
- choose the b-tagged jet leading to highest $\mathrm{p}_{\mathrm{T}}^{\text {top }}$ (81\%)
* Possible to measure M_{t} with a precision $\simeq 1.3 \mathrm{GeV}$ (systematic) for $10 \mathrm{fb}^{\mathbf{- 1}}$

backup: top mass

- The different algorithms lead to distinct jets shapes when they overlap
kT (I) starts around softer objects

C/A (0) cares only about distances

anti-kt (-I) clusters around hard objects

$$
\mathrm{d}_{\mathrm{ij}}=\min \left[\mathbf{p}_{\mathrm{Ti}}^{2 \alpha}, \mathrm{p}_{\mathrm{Ti}}^{2 \alpha}\right]\left(\frac{\Delta \mathbf{R}_{\mathrm{ij}}}{\mathbf{R}}\right)^{2} \quad \text { and } \quad \mathrm{d}_{\mathrm{iB}}=\mathrm{p}_{\mathrm{Ti}}^{2 \alpha}
$$

$p_{T}^{A}>p_{T}^{B}$

[JHEPO4 (2008) 063]

IV.Anomalous couplings

Triple gauge-boson vertices

is SM gauge fixes TGV

is We have already observed $\mathbf{W}^{+} \mathbf{W}^{-} \gamma$ and $\mathbf{W}^{+} \mathbf{W}^{-} \mathbf{Z}$
is Hypothesis: C and P conservation

is Deviations from SM in terms of 5 new parameters

$$
\mathcal{L}_{\mathrm{eff}}^{\mathrm{WWV}}=-i g_{\mathrm{WWV}}\left[g_{1}^{V}\left(W_{\mu \nu}^{+} W^{-\mu}-W_{\mu \nu}^{-} W^{+\mu}\right) V^{\nu}+\kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu \nu}+\frac{\lambda_{V}}{M_{W}^{2}} W_{\mu}^{+\nu} W_{\nu}^{-\rho} V_{\rho}^{\mu}\right]
$$

its smoking gun: $\hat{\sigma}$ grows with $\sqrt{\hat{\mathbf{s}}}$
is We must introduce form factors
$\left(1+\mathrm{Q}^{2} / \Lambda^{2}\right)^{-\mathrm{n}}$
is NLO available; uncertainties PDFs

$\left.{ }^{2}\right\} \mathbf{p} \mathbf{p} \rightarrow \mathbf{W} \gamma(\mathbf{Z})$: limits fitting $\mathbf{p}_{\mathbf{T}}^{\mathbf{V}}$

\& Attainable 95\% CL limits

anomalous coupling	direct LEP limits	indirect limits	pair production limits at the LHC
$\Delta \kappa_{\gamma}$	$[-0.105,0.069]$	$[-0.044,0.059]$	$[-0.034,0.034]$
λ_{γ}	$[-0.059,0.026]$	$[-0.061,0.10]$	$[-0.0014,0.0014]$
g_{1}^{Z}	$[-0.051,0.034]$	$[-0.051,0.0092]$	$[-0.0038,0.0038]$
$\Delta \kappa_{Z}$	$[-0.040,0.046]$	$[-0.050,0.0039]$	$[-0.040,0.040]$
λ_{Z}	$[-0.059,0.026]$	$[-0.061,0.10]$	$[-0.0028,0.0028]$

it The statistics will be enough to measure the form factors:

- Presently not enough data have been analyzed at LHC
- ATLAS analyzed $1 \mathrm{fb}^{-1}$ of $W Z \rightarrow$ थ $\ell \boldsymbol{F}_{T}$ (71 events)
- basic cuts: $p_{T}^{\mu, e}(Z)>15 \mathrm{GeV} ; p_{T}^{\mu, e}(W)>20 \mathrm{GeV}$; $\left|\eta_{\mu, e}\right|<2.5 ;\left|m_{\ell \ell}-M_{Z}\right|<10 \mathrm{GeV}$;
$E_{T}>25 \mathrm{GeV} ; m_{T}>20 \mathrm{GeV}$
- Main backgrounds: $Z Z, W / Z+$ jets, $t \bar{t}, W / Z+\gamma$

Final State	$e e e+E_{\mathrm{T}}^{\text {miss }}$	$e e \mu+E_{\mathrm{T}}^{\text {miss }}$	$e \mu \mu+E_{\mathrm{T}}^{\text {miss }}$	$\mu \mu \mu+E_{\mathrm{T}}^{\text {miss }}$	Combined
Observed	11	9	22	29	71
$Z Z$	0.4 ± 0.0	1.0 ± 0.1	0.8 ± 0.1	1.7 ± 0.1	$3.9 \pm 0.1 \pm 0.2$
$W / Z+$ jets	2.0 ± 0.5	0.7 ± 0.3	1.7 ± 0.5	0.4 ± 0.3	$4.8 \pm 0.8_{-1.9}^{+4.0}$
Top	0.2 ± 0.1	0.8 ± 0.6	0.9 ± 0.7	0.4 ± 0.5	$2.3 \pm 1.0 \pm 0.5$
$W / Z+\gamma$	0.5 ± 0.3	-	0.6 ± 0.4	-	$1.1 \pm 0.5 \pm 0.1$
Total Background	3.1 ± 0.6	2.5 ± 0.7	3.9 ± 0.9	2.6 ± 0.6	$12.1 \pm 1.4_{-2.0}^{+4.1}$
Expected Signal	7.7 ± 0.2	11.6 ± 0.2	12.4 ± 0.2	18.6 ± 0.3	$50.3 \pm 0.4 \pm 4.3$

- little statistics to do a fit => use total cross section

Coupling	Observed $(\Lambda=2 \mathrm{TeV})$	Observed $(\Lambda=\infty)$	Expected $(\Lambda=\infty)$
Δg_{1}^{Z}	$[-0.20,0.30]$	$[-0.16,0.24]$	$[-0.12,0.20]$
$\Delta \kappa_{Z}$	$[-0.9,1.1]$	$[-0.8,1.0]$	$[-0.6,0.8]$
λ_{Z}	$[-0.17,0.17]$	$[-0.14,0.14]$	$[-0.11,0.11]$

EWSB $\times \mathbf{1} \mathrm{TeV}$ scale

$\stackrel{(}{ } \mathbf{W}_{\mathrm{L}}^{+} \mathbf{W}_{\mathrm{L}}^{-} \rightarrow \mathbf{W}_{\mathrm{L}}^{+} \mathbf{W}_{\mathrm{L}}^{-}$violates unitarity without EWSB

$$
\mathrm{T}(\mathrm{~s}, \mathrm{t})=\mathrm{A}\left(\frac{\mathrm{p}}{\mathrm{M}_{\mathrm{W}}}\right)^{4}+\mathrm{B}\left(\frac{\mathrm{p}}{\mathrm{M}_{\mathrm{W}}}\right)^{2}+\mathrm{C}
$$

$\mathbf{A}=0$ without the Higgs.

© Including the Higgs: $\mathrm{a}_{0}=-\frac{\mathrm{M}_{\mathrm{H}}^{2}}{16 \pi \mathrm{v}^{2}}\left[2+\frac{\mathrm{M}_{\mathrm{H}}^{2}}{\mathrm{~s}-\mathrm{M}_{\mathrm{H}}^{2}}-\frac{\mathrm{M}_{\mathrm{H}}^{2}}{\mathrm{~s}} \log \left(1+\frac{\mathrm{s}}{\mathrm{M}_{\mathrm{H}}^{2}}\right)\right]$
© High energy limit: $\mathbf{a}_{0} \xrightarrow{\mathbf{M}_{\mathbf{H}}^{2} \ll}-\frac{\mathbf{M}_{\mathbf{H}}^{2}}{8 \pi \mathbf{v}^{2}} \Longrightarrow \mathbf{M}_{\mathbf{H}}<\mathbf{8 7 0} \mathbf{G e V}\left(\mathrm{M}_{\mathrm{H}}<710 \mathrm{GeV}\right)$
\oplus No Higgs limit: $\mathrm{a}_{0} \xrightarrow{\mathrm{M}_{\mathrm{H}}^{2} \gg \mathrm{~s}}-\frac{\mathrm{s}}{32 \pi \mathrm{v}^{2}} \Longrightarrow \sqrt{\mathrm{~s}_{\mathrm{c}}}<1.2 \mathrm{TeV}$
\Rightarrow In the limit $p_{g} \rightarrow 0$

$$
\mathcal{M}_{1}=\bar{u}\left(p_{q}\right) \frac{\gamma_{\alpha} \psi_{q}}{\left(p_{q}+p_{g}\right)^{2}} \mathcal{N}=\bar{u}\left(p_{q}\right) \frac{2 p_{q \alpha}}{2 p_{q} \cdot p_{g}} \mathcal{N}=\frac{p_{q \alpha}}{p_{q} \cdot p_{g}} \mathcal{M}
$$

\Rightarrow The total amplitude for gluon emission is this limit is

$$
\begin{aligned}
\mathcal{M}_{q \bar{q} g} & =\left(\frac{p_{q \alpha}}{p_{q} \cdot p_{g}}-\frac{p_{\bar{q} \alpha}}{p_{\bar{q}} \cdot p_{g}}\right) \mathcal{M} \\
|\mathcal{M}|_{q \bar{q} g}^{2} & =2 \frac{p_{q} \cdot p_{\bar{q}}}{\left(p_{q} \cdot p_{g}\right)\left(p_{\bar{q}} \cdot p_{g}\right)}|\mathcal{M}|^{2}
\end{aligned}
$$

\Rightarrow After including the $d \Phi_{3}$ we obtain (explain!)

$$
\sigma^{q \bar{q} g}=\frac{2 \alpha_{s}}{3 \pi} \sigma_{q \bar{q}} \int d \cos \theta_{q g} \frac{d E_{g}}{E_{g}} \frac{4}{\left(1-\cos \theta_{q g}\right)\left(1+\cos \theta_{q g}\right)}
$$

the quark and antiquark are basically back to back in this limit.

