2. QCD & SM examples

- I. QCD corrections
- II. Jets
- III. Hunting the Higgs at the LHC
- IV. Top quark mass measurement

 In order to have precise predictions working at LO might not be enough

[Stirling-Pascos 2011]

• In order to have precise predictions working at LO might not be enough

[Stirling-Pascos 2011]

I. QCD corrections

Total Cross Section

Can we use pQCD despite confinement? "YES"

* The γ/Z virtuality is $Q = \sqrt{s}$ * Production occurs at a distance $\simeq \frac{1}{Q}$ * Q is large \implies pQCD applicable

- Hadronization changes quarks and gluons to hadrons.
- \checkmark Hadronization takes place at a scale $\frac{1}{\Lambda}$.
- The change in the outgoing state occurs too late to modify the probability of the event to happen!
- Details of the final state certainly are changed.

Lowest Order Result (α_s^0)

 \checkmark For simplicity, we neglect the Z contribution (i.e. $\sqrt{s} \ll M_Z$)

$$\frac{d\sigma_0}{d\cos\theta} = \frac{\pi\alpha^2 Q_f^2}{2s} N_c \left(1 + \cos^2\theta\right) \implies \sigma_0 = \frac{4\pi\alpha^2}{3s} N_c Q_f^2$$

leading to

$$R_0 \equiv \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = N_c \sum_q Q_q^2$$

 \rightleftharpoons At the Z pole (i.e. neglecting γ), we have

$$R_{0} = N_{c} \frac{\sum_{q} \left(A_{q}^{2} + V_{q}^{2}\right)}{A_{\mu}^{2} + V_{\mu}^{2}}$$

After adding all contributions the UV divergences cancel out (Ward identity). The same happens for the IR ones!

$$R = R_0 \left(1 + \frac{\alpha_s(\mu)}{\pi} \right) \longrightarrow R_0 \left(1 + \frac{\alpha_s(\sqrt{s})}{\pi} \right)$$

Unlike UV divergences, there is no renormalization for the IR ones. They indicate sensitivity to long range physics like masses, hadronization process, etc.

→ The singularities are not physical; they indicate the breakdown of the perturbative approach. Quarks and gluons are never on mass-shell-particles and we can not ignore the effects of confinement at a scale $\simeq 1$ GeV.

General form of the IR divergences for $p_q \rightarrow 0$

$$\sigma^{q\overline{q}g} = \frac{2\alpha_s}{3\pi}\sigma_{q\overline{q}}\int d\cos\theta_{qg}\frac{dE_g}{E_g}\frac{4}{(1-\cos\theta_{qg})(1+\cos\theta_{qg})}$$

NLO in hadron colliders

The parton model expression for cross sections is

 $egin{aligned} \sigma &= \sum_{ij} rac{1}{1+\delta_{ij}} \int dx_1 \ dx_2 & \left\{ f_i(x_1,Q_F^2) f_j(x_2,Q_F^2) \ + \ i \leftrightarrow j
ight\} \otimes \ & \hat{\sigma}_{ij}(lpha_s(Q_R^2),Q_R^2,Q_F^2;x_1x_2s) \end{aligned}$

 \checkmark Expanding the pdf's and $\hat{\sigma}$ ($X = X^{(0)} + X^{(1)} + \cdots$) the lowest order term is

$$\sigma = \sum_{ij} \frac{1}{1+\delta_{ij}} \int dx_1 \, dx_2 \left\{ f_i^{(0)}(x_1) f_j^{(0)}(x_2) + i \leftrightarrow j \right\} \otimes \hat{\sigma}_{ij}^{(0)}(x_1 x_2 s)$$

The NLO contribution is obtained through

 $[f_i^{(1)}f_j^{(0)} + f_i^{(0)}f_j^{(1)} + i \leftrightarrow j] \times \hat{\sigma}^{(0)} \oplus [f_i^{(0)}f_j^{(0)} + i \leftrightarrow j] \times \hat{\sigma}^{(1)}$

The red term contains collinear divergences that are canceled by the divergences in the blue term.

• Scales:

• The evaluation of $\hat{\sigma}$ contains a UV divergence => renormalization => remnant of the process is the renormalization scale μ_R

- Full calculation should not depend on μ_R => we can estimate the higher order corrections by the μ_R dependence
- At each order, the subprocess cross section and the PDF's have a residual factorization scale dependence on μ_F
- The residual scale dependence should improve with higher order calculations

• Scales:

• The evaluation of $\hat{\sigma}$ contains a UV divergence => renormalization => remnant of the process is the renormalization scale μ_R

- Full calculation should not depend on μ_R => we can estimate the higher order corrections by the μ_R dependence
- At each order, the subprocess cross section and the PDF's have a residual factorization scale dependence on μ_F

(C. Anastasiou, L. Dixon, K. Melnikov, F. Petriello, PRL 91 (2003) 182002)

II. Jets

 \Leftrightarrow Can we obtain more information on the hadron production besides the total cross section?

 \checkmark We expect that soft process don't change completely the high energy features \implies a spray of hadrons follows the direction of the original quarks and gluons.

Three jet event:

why not 4?
Which particles belong to a jet?
how to get

$$p_{parton} \simeq p_{jet}$$
 ?

Not an easy task:

- I. Simple to implement in an experimental analysis
- 2. Simple to implement in a theoretical calculation
- 3. Defined at any order of perturbation theory
- 4. Yields finite cross sections at any order of PT
- 5. Yields a cross section rather insensitive to hadronization

A few jet algorithms

- Three popular jet algorithms are kT, anti-kT, and Cambridge/Aachen
- The distance and rule to join objets is

$$\mathbf{d_{ij}} = \min[\mathbf{p_{Ti}^{2\alpha}}, \mathbf{p_{Ti}^{2\alpha}}] \ \left(\frac{\Delta \mathbf{R_{ij}}}{\mathbf{R}}\right)^2 \quad \text{and} \quad \mathbf{d_{iB}} = \mathbf{p_{Ti}^{2\alpha}}$$

with $\Delta R_{ij} = \sqrt{\Delta \eta_{ij}^2 + \Delta \varphi_{ij}^2}$

repeatedly combine objets until ${\rm d}_{i{\rm B}}$ is the smaller distance. Then call it a jet, remove from the list and start again

•The choices are: kT ($\alpha = 1$); anti-kT ($\alpha = -1$); C/A ($\alpha = 0$)

This expression also describes well the y dependence

• The basic expression for 2 to 2 processes is

$$\frac{d\sigma}{dp_T^2} = \sum_{ij} \int dx_1 dx_2 \, \frac{f_i(x_1, Q_F^2) f_j(x_2, Q_F^2)}{(1 + \delta_{ij})} \, \times \, \frac{d\hat{\sigma}}{dp_T^2}$$

+ In the jet-jet CMS $\implies dy_1 dy_2 dp_T^2 = \frac{1}{2} s dx_1 dx_2 d \cos \theta^*$

$$rac{d^3\sigma}{dy_1dy_2dp_T^2} = rac{1}{16\pi s^2} \sum_{ij} rac{f_i(x_1,Q_F^2)f_j(x_2,Q_F^2)}{(1+\delta_{ij})x_1x_2} imes \overline{\sum} |M(ij o kl)|^2$$
 with

$$x_1 = rac{x_T}{2} \left(e^{y_1} + e^{y_2}
ight) ; \quad x_2 = rac{x_T}{2} \left(e^{-y_1} + e^{-y_2}
ight) \quad \mathbf{x_T} = rac{2\mathbf{p_T}}{\sqrt{\mathbf{s}}}$$

Process	$rac{32\pi^2}{lpha_s^2} \; rac{d\hat{\sigma}}{d\Omega}$	at 90 degrees
$qq' \rightarrow qq'$	$rac{1}{2\hat{s}}rac{4}{9}rac{\hat{s}^2+\hat{u}^2}{\hat{t}^2}$	2.2
$qq \rightarrow qq$	$\frac{1}{2} \frac{1}{2\hat{s}} \left[\frac{4}{9} \left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{s}^2 + \hat{t}^2}{\hat{u}^2} \right) - \frac{8}{27} \frac{\hat{s}^2}{\hat{u}\hat{t}} \right]$	3.3
$q \bar{q} \rightarrow q' \bar{q}'$	$rac{1}{2\hat{s}}rac{4}{9}rac{\hat{t}^2+\hat{u}^2}{\hat{s}^2}$	0.2
$q\bar{q} \rightarrow q\bar{q}$	$\frac{1}{2\hat{s}} \left[\frac{4}{9} \left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} \right) - \frac{8}{27} \frac{\hat{u}^2}{\hat{s}\hat{t}} \right]$	2.6
$q \bar{q} ightarrow gg$	$rac{1}{2}rac{1}{2\hat{s}}\left[rac{32}{27}rac{\hat{t}^2+\hat{u}^2}{\hat{t}\hat{u}}-rac{8}{3}rac{\hat{t}^2+\hat{u}^2}{\hat{s}^2} ight]$	1.0
$gg \rightarrow q\bar{q}$	$rac{1}{2\hat{s}}\left[rac{1}{6}rac{\hat{t}^2+\hat{u}^2}{\hat{t}\hat{u}}-rac{3}{8}rac{\hat{t}^2+\hat{u}^2}{\hat{s}^2} ight]$	0.1
$ gq \rightarrow gq$	$rac{1}{2\hat{s}}\left[-rac{4}{9}rac{\hat{s}^2+\hat{u}^2}{\hat{s}\hat{u}}+rac{\hat{u}^2+\hat{s}^2}{\hat{t}^2} ight]$	6.1
gg ightarrow gg	$rac{1}{2}rac{1}{2\hat{s}}rac{9}{2}\left(3-rac{\hat{t}\hat{u}}{\hat{s}^2}-rac{\hat{s}\hat{u}}{\hat{t}^2}-rac{\hat{s}\hat{t}}{\hat{u}^2} ight)$	30.4

+ The LO processes leading to jets are (gluon in the *t*-channel)

with $\hat{t} = -\hat{s} \; (1 - \cos \theta)/2$ and $\hat{u} = -\hat{s} \; (1 + \cos \theta)/2$

Tevatron results

the inclusive jet cross section does agree with NLO QCD over 8 orders of magnitude!

•Let's look the results without the dirt trick of log plots

the inclusive jet cross section is nicely described by NLO QCD

a more serious comparison

V. Hunting the SM Higgs

V. Hunting the SM Higgs

Higgs production mechanisms and cross sections

• We must take into account the H decays

 $H \to W^+ W^- \to \ell^+ \ell^- E_T + 0, 1, 2 \text{ jets}$

Cuts used in the analyses

$m_{ m H}$	$p_{\mathrm{T}}^{\ell,\mathrm{max}}$	$p_{\mathrm{T}}^{\ell,\mathrm{min}}$	$m_{\ell\ell}$	$\Delta \phi_{\ell\ell}$	$m_T^{\ell\ell E_{\mathrm{T}}^{\mathrm{miss}}}$
$[\text{GeV}/c^2]$	[GeV/c]	[GeV/c]	$[\text{GeV}/c^2]$	[dg.]	$[GeV/c^2]$
	>	>	<	<	[,]
120	20	10(15)	40	115	[80,120]
130	25	10(15)	45	90	[80,125]
160	30	25	50	60	[90,160]
200	40	25	90	100	[120,200]
250	55	25	150	140	[120,250]
300	70	25	200	175	[120,300]
400	90	25	300	175	[120,400]

 $H \to W^+ W^- \to \ell^+ \ell^- E_T + 0, 1, 2 \text{ jets}$

Cuts used in the analyses

$m_{ m H}$	$p_{\mathrm{T}}^{\ell,\mathrm{max}}$	$p_{\mathrm{T}}^{\ell,\mathrm{min}}$	$m_{\ell\ell}$	$\Delta \phi_{\ell\ell}$	$m_T^{\ell\ell E_{\mathrm{T}}^{\mathrm{miss}}}$
$[\text{GeV}/c^2]$	[GeV/c]	[GeV/c]	$[\text{GeV}/c^2]$	[dg.]	$[GeV/c^2]$
	>	>	<	<	[,]
120	20	10(15)	40	115	[80,120]
130	25	10(15)	45	90	[80,125]
160	30	25	50	60	[90,160]
200	40	25	90	100	[120,200]
250	55	25	150	140	[120,250]
300	70	25	200	175	[120,300]
400	90	25	300	175	[120,400]

Δφ_{..} [°]

 $H \to W^+ W^- \to \ell^+ \ell^- E_T + 0, 1, 2 \text{ jets}$

Cuts used in the analyses

$m_{ m H}$	$p_{\mathrm{T}}^{\ell,\mathrm{max}}$	$p_{\mathrm{T}}^{\ell,\mathrm{min}}$	$m_{\ell\ell}$	$\Delta \phi_{\ell\ell}$	$m_T^{\ell\ell E_{\mathrm{T}}^{\mathrm{miss}}}$
$[\text{GeV}/c^2]$	[GeV/c]	[GeV/c]	$[\text{GeV}/c^2]$	[dg.]	$[GeV/c^2]$
	>	>	<	<	[,]
120	20	10(15)	40	115	[80,120]
130	25	10(15)	45	90	[80,125]
160	30	25	50	60	[90,160]
200	40	25	90	100	[120,200]
250	55	25	150	140	[120,250]
300	70	25	200	175	[120,300]
400	90	25	300	175	[120,400]

Data describes predicted background well.

- Low branching ratio but great mass resolution (similar to 4 leptons)
- Useful in the range $110 < M_H < 150 \text{ GeV}$
- requirement: two energetic photons
- signal is an excess over a "smooth" falling background
- Main backgrounds: $pp \to \gamma\gamma$; $pp \to \gamma$ jet ; $pp \to j$ et + jet
- Tight photon requirements

Observed limits

Observed limits

Combining all search channels

Combining all channels

Light Higgs production via WBF (good for 14 TeV)

 $\pmb{\ast}$ We can tag the final state jets in $\mathbf{q}\mathbf{q} \to \mathbf{H}\mathbf{q}\mathbf{q} \to \mathbf{H}\mathbf{j}\mathbf{j}$

* Let's focus on $\mathbf{H} \to \tau^+ \tau^- \to \mathbf{e}^\mp \mu^\pm p_T$

* The main backgrounds are (write the subprocesses)

- $t\overline{t} + n$ jets with n = 0, 1, 2. The extra jet is a tagging jet.
- $\mathbf{b}\mathbf{\bar{b}jj}$ with $\mathbf{b} \rightarrow \nu \ell \mathbf{c}$
- QCD $\tau \tau j j$ that are higher order of DY $\mathbf{Z} \rightarrow \tau \tau$
- EW ττjj: WBF of Z's
- QCD and EW WWjj production

* The main cuts are:

Rapidity gap and acceptance cuts

$$\begin{split} p_{T_j} &\geq 20 \; \text{GeV} \;, \; \; |\eta_j| \leq 5.0 \;, \; \; \bigtriangleup R_{jj} \geq 0.7 \\ p_{T_\ell} &\geq 10 \; \text{GeV} \;, \; \; |\eta_\ell| \leq 2.5 \;, \; \; \bigtriangleup R_{j\ell} \geq 0.7 \\ &\bigtriangleup R_{e\mu} \geq 0.4 \;, \\ \eta_{j,min} + 0.7 < \eta_{\ell_{1,2}} < \eta_{j,max} - 0.7 \;, \\ &\eta_{j_1} \cdot \eta_{j_2} < 0 \\ &\bigtriangleup \eta_{tags} = |\eta_{j_1} - \eta_{j_2}| \geq 4.4 \;, \end{split}$$

,

- b-veto: $p_{T_b} > 20 \text{ GeV}$, $\eta_{j,\min} < \eta_b < \eta_{j,\max}$.
- Missing transverse momentum $p_T > 30 \text{ GeV}$

Arbitrary units Higgs signal mu=160 GeV/c² tt background a) 0.02 0.01 0 -2 0 2 η $1/\sigma d\sigma/dp_{T} (GeV^{-1})$ 25 50 75 100 125 150 0

 p_{T} (GeV)

• $M_{jj} > 800 \text{ GeV}$

• $\tau \tau$ reconstruction: $\mathbf{M}_{\tau \tau} = \mathbf{m}_{e\mu} / \sqrt{\mathbf{x}_{\tau_1} \mathbf{x}_{\tau_2}}$

$$\begin{split} &\cos \phi_{e\mu} \ > \ -0.9 \ . \\ &x_{\tau_1}, \ x_{\tau_2} > 0 \ , \\ &x_{\tau_1}^2 + x_{\tau_2}^2 < 1 \ . \end{split}$$

- Lepton correlations: $\triangle R_{e\mu} < 2.6$
- minijet veto:

$$\mathbf{p_{Tj}^{veto}} > \mathbf{p_{T,veto}}$$
; $\eta_{j,min}^{tag} < \eta_{j}^{veto} < \eta_{j,max}^{tag}$

***** Effect of the cuts for $M_{\rm H} = 120$ GeV and a bins ± 10 GeV

	$H \to \tau \tau$	QCD	EW			QCD	EW	
cuts	signal	au au j j	au au j j	$tar{t}+jets$	$b\overline{b}jj$	WWjj	WWjj	S/B
forward tags	1.34	4.7	0.18	45	8.2	0.18	0.11	1/44
+ b veto				2.6				1/12
$+ p_T$	1.17	2.3	0.12	2.0	0.28	0.12	0.08	1/4.1
$+ M_{ii}$	0.92	0.67	0.10	0.53	0.13	0.049	0.073	1/1.7
+ non- τ reject.	0.87	0.58	0.10	0.09	0.10	0.009	0.012	1/1
+ $\Delta R_{e\mu}$	0.84	0.52	0.086	0.087	0.028	0.009	0.011	1.1/1
+ ID effic. ($\times 0.67$)	0.56	0.34	0.058	0.058	0.019	0.006	0.008	1.1/1
$P_{surv,20}$	$\times 0.89$	$\times 0.29$	$\times 0.75$	$\times 0.29$	$\times 0.29$	imes 0.29	$\times 0.75$	-
+ minijet veto	0.50	0.100	0.043	0.017	0.006	0.002	0.006	2.7/1

***** Contamination from $\mathbf{H} \to \mathbf{W}\mathbf{W}$

M_{H}	115	120	125	130	135	140	145	150
$B(H \to \tau \tau) \cdot \sigma$ (fb)	0.93	0.84	0.74	0.62	0.51	0.39	0.27	0.19
$B(H o WW) \cdot \sigma$ (fb)	0.015	0.024	0.034	0.045	0.057	0.067	0.072	0.076

Even after full simulation the Higgs signal is nice

$* \tau \tau$ channel

WW channel

IV.Top mass measurement

Top mass measurement in $t\bar{t} \rightarrow jjb (e/\mu)\nu b$ at 14 TeV

Main background and their size

Process	σ (pb)
signal	250
$\mathbf{bb} \rightarrow \ell \nu + jets$	$\mathbf{2.2 imes 10^6}$
$\mathbf{W} + jets \rightarrow \ell \nu + jets$	$7.8 imes10^3$
$\mathbf{Z} + \text{ jets} \rightarrow \ell^+ \ell^- + \text{ jets}$	$7.8 imes10^3$
$\mathbf{WW} \rightarrow \ell \nu + jets$	17.1
$\mathbf{WZ} ightarrow \ell u + jets$	3.4
$\mathbf{ZZ} \rightarrow \ell^+ \ell^- + \text{ jets}$	9.2

 $\mathbf{S}/\mathbf{B} \simeq 10^{-4}$ This is not as bad as it looks.

Event selection

- 1 isolated e^{\pm} or μ^{\pm} with $p_{T} > 20$ GeV and $|\eta| < 2.5$
- $\mathbb{E}_T > \mathbf{20} \text{ GeV}$.
- 2 tagged b quarks with $\mathbf{p}_{\mathrm{T}} > 40$ GeV and $|\eta| < 2.5$
- 2 light jets with $\mathbf{p_T} > \mathbf{40} \; \mathsf{GeV}$ and $|\eta| < \mathbf{2.5}$

	Process	Cross-section (pb)	Total efficiency (%)
Atter Cuts	$tar{t}$ signal	250	3.5
${f S}/{f B}\simeq 78$	$b \overline{b} ightarrow l u + jets$	$2.2 imes 10^6$	3×10^{-8}
87k events	W+jets ightarrow l u+jets	$7.8 imes 10^3$	$2 imes 10^{-4}$
for 10 fb -1	$Z+jets ightarrow l^+l^-+jets$	$1.2 imes 10^3$	$6 imes 10^{-5}$
	WW ightarrow l u + jets	17.1	$7 imes 10^{-3}$
	WZ ightarrow l u + jets	3.4	1×10^{-2}
	$ZZ ightarrow l^+l^- + jets$	9.2	3×10^{-3}
***** Top quark mass from $\mathbf{t} \to \mathbf{bjj}$

- The event present ≥ 4 jets (ISR and FSR)
- Recontruct the W: $|\mathbf{M}_{jj} - \mathbf{M}_{\mathbf{W}}^{\mathbf{PDG}}| < 20 \text{ GeV}$ (purity 66%)
- choose the b-tagged jet leading to highest $\mathbf{p}_{\mathrm{T}}^{\mathrm{top}}$ (81%)

* Possible to measure M_t with a precision $\simeq 1.3$ GeV (systematic) for 10 fb⁻¹

backup: top mass

• The different algorithms lead to distinct jets shapes when they overlap

kT (I) starts around softer objects

C/A (0) cares only about distances

anti-kt (-1) clusters around hard objects

 $\mathbf{d_{ij}} = \min[\mathbf{p_{Ti}^{2\alpha}}, \mathbf{p_{Ti}^{2\alpha}}] \ \left(\frac{\Delta R_{ij}}{R}\right)^2 \quad \text{and} \quad \mathbf{d_{iB}} = \mathbf{p_{Ti}^{2\alpha}}$

 $p_T^A > p_T^B$

[JHEP04 (2008) 063]

IV. Anomalous couplings

conservation

Triple gauge-boson vertices

(hep-ph/0506074)

30

SM gauge fixes TGV We have already observed $W^+W^-\gamma$ and W^+W^-Z Hypothesis: *C* and *P*

20-10-VFSWW/RacoonWW no 2WW vertex (Gentle) 0-160 180 200

√s (GeV)

LEP

PRELIMINARY

☆ Deviations from SM in terms of 5 new parameters

$$\mathcal{L}_{\text{eff}}^{\text{WWV}} = -ig_{\text{WWV}} \left[g_{1}^{V} (W_{\mu\nu}^{+} W^{-\mu} - W_{\mu\nu}^{-} W^{+\mu}) V^{\nu} + \kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu} + \frac{\lambda_{V}}{M_{W}^{2}} W_{\mu}^{+\nu} W_{\nu}^{-\rho} V_{\rho}^{\mu} \right]$$

 $rac{1}{2}$ smoking gun: $\hat{\sigma}$ grows with $\sqrt{\hat{s}}$

 We must introduce form factors $(1+Q^2/\Lambda^2)^{-n}$

NLO available; uncertainties PDFs

 $rightarrow \mathbf{pp}
ightarrow \mathbf{W} \gamma (\mathbf{Z})$: limits fitting $\mathbf{p_T^V}$

🖈 Attainable 95% CL limits

anomalous coupling	direct LEP limits	indirect limits	pair production limits at the LHC
$\Delta \kappa_{\gamma}$	[-0.105, 0.069]	$[-0.044 \ , \ 0.059]$	$[-0.034 \ , \ 0.034]$
λ_{γ}	[-0.059, 0.026]	[-0.061 , 0.10]	[-0.0014, 0.0014]
g_1^Z	[-0.051, 0.034]	[-0.051, 0.0092]	[-0.0038, 0.0038]
$\Delta \kappa_Z$	[-0.040, 0.046]	[-0.050 , 0.0039]	[-0.040 , 0.040]
λ_Z	[-0.059, 0.026]	[-0.061, 0.10]	[-0.0028, 0.0028]

The statistics will be enough to measure the form factors:

- Presently not enough data have been analyzed at LHC
- ATLAS analyzed 1 fb⁻¹ of $WZ \to \ell \ell \ell E_T$ (71 events)
- - Main backgrounds: ZZ, W/Z+ jets, $t\bar{t}$, $W/Z + \gamma$

Final State	$eee + E_{\rm T}^{\rm miss}$	$ee\mu + E_{\mathrm{T}}^{\mathrm{miss}}$	$e\mu\mu+E_{ m T}^{ m miss}$	$\mu\mu\mu + E_{ m T}^{ m miss}$	Combined
Observed	11	9	22	29	71
ZZ	$0.4{\pm}0.0$	1.0 ± 0.1	$0.8 {\pm} 0.1$	1.7 ± 0.1	$3.9{\pm}0.1{\pm}0.2$
W/Z+jets	2.0 ± 0.5	0.7 ± 0.3	1.7 ± 0.5	0.4 ± 0.3	$4.8 \pm 0.8^{+4.0}_{-1.9}$
Top	0.2 ± 0.1	0.8 ± 0.6	0.9 ± 0.7	0.4 ± 0.5	$2.3 \pm 1.0 \pm 0.5$
$W/Z + \gamma$	$0.5 {\pm} 0.3$	_	$0.6 {\pm} 0.4$	_	$1.1{\pm}0.5{\pm}0.1$
Total Background	$3.1 {\pm} 0.6$	$2.5 {\pm} 0.7$	$3.9{\pm}0.9$	$2.6 {\pm} 0.6$	$12.1 \pm 1.4^{+4.1}_{-2.0}$
Expected Signal	7.7 ± 0.2	11.6 ± 0.2	12.4 ± 0.2	$18.6 {\pm} 0.3$	$50.3 {\pm} 0.4 {\pm} 4.3$

• little statistics to do a fit => use total cross section

Coupling	Observed	Observed	Expected
	$(\Lambda = 2 \text{ TeV})$	$(\Lambda = \infty)$	$(\Lambda = \infty)$
Δg_1^Z	[-0.20, 0.30]	[-0.16, 0.24]	[-0.12, 0.20]
$\Delta \kappa_Z$	[-0.9, 1.1]	[-0.8, 1.0]	[-0.6, 0.8]
λ_Z	[-0.17, 0.17]	[-0.14, 0.14]	[-0.11, 0.11]

 $EWSB \times 1$ TeV scale

(Lee, Quigg, Thacker)

 $\ensuremath{\textcircled{O}}\xspace W_L^+ W_L^- \to W_L^+ W_L^-$ violates unitarity without EWSB

$$\label{eq:T} T(s,t) = \frac{A}{A} \left(\frac{p}{M_W} \right)^4 + \frac{B}{A} \left(\frac{p}{M_W} \right)^2 + C$$

 $\mathbf{A} = \mathbf{0}$ without the Higgs.

$$\textcircled{0} \text{ Including the Higgs: } \mathbf{a}_0 = -\frac{M_H^2}{16\pi v^2} \left[2 + \frac{M_H^2}{s - M_H^2} - \frac{M_H^2}{s} \log\left(1 + \frac{s}{M_H^2}\right) \right]$$

 $\textcircled{O} \text{ High energy limit: } \mathbf{a}_0 \stackrel{\mathbf{M}_{\mathbf{H}}^2 \ll s}{\longrightarrow} - \frac{\mathbf{M}_{\mathbf{H}}^2}{8\pi \mathbf{v}^2} \implies \mathbf{M}_{\mathbf{H}} < 870 \text{ GeV } (\mathbf{M}_{\mathbf{H}} < 710 \text{ GeV})$

 $\textcircled{O} \text{ No Higgs limit: } \mathbf{a}_0 \stackrel{\mathbf{M}_{H}^2 \gg s}{\longrightarrow} - \frac{\mathbf{s}}{32\pi \mathbf{v}^2} \implies \sqrt{\mathbf{s}_c} < 1.2 \text{ TeV}$

 \rightleftharpoons In the limit $p_g \rightarrow 0$

$$\mathcal{M}_1 = \overline{u}(p_q) \frac{\gamma_\alpha p_q'}{(p_q + p_g)^2} \mathcal{N} = \overline{u}(p_q) \frac{2p_{q\alpha}}{2p_q \cdot p_g} \mathcal{N} = \frac{p_{q\alpha}}{p_q \cdot p_g} \mathcal{M}$$

 \Leftrightarrow The total amplitude for gluon emission is this limit is

$$egin{aligned} \mathcal{M}_{qar{q}g} &= \left(rac{p_{qlpha}}{p_q \cdot p_g} - rac{p_{ar{q}lpha}}{p_{ar{q}} \cdot p_g}
ight)\mathcal{M} \ &\\ \mathcal{M}|^2_{qar{q}g} &= 2rac{p_q \cdot p_{ar{q}}}{(p_q \cdot p_g)(p_{ar{q}} \cdot p_g)}|\mathcal{M}|^2. \end{aligned}$$

 \Leftrightarrow After including the $d\Phi_3$ we obtain (explain!)

$$\sigma^{q\bar{q}g} = \frac{2\alpha_s}{3\pi} \sigma_{q\bar{q}} \int d\cos\theta_{qg} \frac{dE_g}{E_g} \frac{4}{(1-\cos\theta_{qg})(1+\cos\theta_{qg})}.$$

the quark and antiquark are basically back to back in this limit.